BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 35335430)

  • 1. 3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties.
    Sousa AM; Amaro AM; Piedade AP
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing technology and its revolutionary role in stent implementation in cardiovascular disease.
    Khan MA; Khan N; Ullah M; Hamayun S; Makhmudov NI; Mbbs R; Safdar M; Bibi A; Wahab A; Naeem M; Hasan N
    Curr Probl Cardiol; 2024 Jun; 49(6):102568. PubMed ID: 38599562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of 3D-Printed Sulfated Chitosan Modified Bioresorbable Stents for Coronary Artery Disease.
    Qiu T; Jiang W; Yan P; Jiao L; Wang X
    Front Bioeng Biotechnol; 2020; 8():462. PubMed ID: 32509747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Development of Design and Manufacture Techniques for Bioresorbable Coronary Artery Stents.
    Wang L; Jiao L; Pang S; Yan P; Wang X; Qiu T
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printing advances in the development of stents.
    Khalaj R; Tabriz AG; Okereke MI; Douroumis D
    Int J Pharm; 2021 Nov; 609():121153. PubMed ID: 34624441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing Toward 3D Printing of Bioresorbable Shape Memory Polymer Stents.
    Yeazel TR; Becker ML
    Biomacromolecules; 2020 Oct; 21(10):3957-3965. PubMed ID: 32924443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent.
    Debusschere N; Segers P; Dubruel P; Verhegghe B; De Beule M
    J Biomech; 2015 Jul; 48(10):2012-8. PubMed ID: 25907549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioresorbable Stents in PCI.
    Lindholm D; James S
    Curr Cardiol Rep; 2016 Aug; 18(8):74. PubMed ID: 27312934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Fabrication Technologies for the Development of Next-Generation Cardiovascular Stents.
    Das A; Mehrotra S; Kumar A
    J Funct Biomater; 2023 Nov; 14(11):. PubMed ID: 37998113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-Printed PCL/PLA Composite Stents: Towards a New Solution to Cardiovascular Problems.
    Guerra AJ; Cano P; Rabionet M; Puig T; Ciurana J
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30208592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Edge vascular response after percutaneous coronary intervention: an intracoronary ultrasound and optical coherence tomography appraisal: from radioactive platforms to first- and second-generation drug-eluting stents and bioresorbable scaffolds.
    Gogas BD; Garcia-Garcia HM; Onuma Y; Muramatsu T; Farooq V; Bourantas CV; Serruys PW
    JACC Cardiovasc Interv; 2013 Mar; 6(3):211-21. PubMed ID: 23517830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Current Literature on Bioabsorbable Stents: a Review.
    Omar WA; Kumbhani DJ
    Curr Atheroscler Rep; 2019 Nov; 21(12):54. PubMed ID: 31768641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-Printed Radiopaque Bioresorbable Stents to Improve Device Visualization.
    Ding Y; Fu R; Collins CP; Yoda SF; Sun C; Ameer GA
    Adv Healthc Mater; 2022 Dec; 11(23):e2201955. PubMed ID: 36168854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials.
    Cassese S; Byrne RA; Ndrepepa G; Kufner S; Wiebe J; Repp J; Schunkert H; Fusaro M; Kimura T; Kastrati A
    Lancet; 2016 Feb; 387(10018):537-544. PubMed ID: 26597771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a radiopaque, long-term drug eluting bioresorbable stent for the femoral-iliac artery.
    Ha DH; Kim JY; Park TS; Park JH; Chae S; Kim BS; Lee HC; Cho DW
    RSC Adv; 2019 Oct; 9(59):34636-34641. PubMed ID: 35529974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BIOFLOW V): a randomised trial.
    Kandzari DE; Mauri L; Koolen JJ; Massaro JM; Doros G; Garcia-Garcia HM; Bennett J; Roguin A; Gharib EG; Cutlip DE; Waksman R;
    Lancet; 2017 Oct; 390(10105):1843-1852. PubMed ID: 28851504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations.
    Qiu TY; Zhao LG; Song M
    Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes.
    Serruys PW; Onuma Y; Ormiston JA; de Bruyne B; Regar E; Dudek D; Thuesen L; Smits PC; Chevalier B; McClean D; Koolen J; Windecker S; Whitbourn R; Meredith I; Dorange C; Veldhof S; Miquel-Hebert K; Rapoza R; García-García HM
    Circulation; 2010 Nov; 122(22):2301-12. PubMed ID: 21098436
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.