These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35335707)

  • 21. Vacancy-induced thermal transport in two-dimensional silicon carbide: a reverse non-equilibrium molecular dynamics study.
    Islam ASMJ; Islam MS; Ferdous N; Park J; Hashimoto A
    Phys Chem Chem Phys; 2020 Jun; 22(24):13592-13602. PubMed ID: 32515451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly Thermo-Conductive Three-Dimensional Graphene Aqueous Medium.
    Bo Z; Ying C; Yang H; Wu S; Yang J; Kong J; Yang S; Zhou Y; Yan J; Cen K
    Nanomicro Lett; 2020 Jul; 12(1):138. PubMed ID: 34138125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal Transport of Graphene Sheets with Fractal Defects.
    Kang Y; Duan F; Shangguan S; Zhang Y; Zhou T; Si B
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30545085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interfacial thermal transport between graphene and diamane.
    Hong Y; Kretchmer JS
    J Chem Phys; 2022 Apr; 156(16):164703. PubMed ID: 35489998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Achieving Significant Thermal Conductivity Enhancement via an Ice-Templated and Sintered BN-SiC Skeleton.
    Yao Y; Ye Z; Huang F; Zeng X; Zhang T; Shang T; Han M; Zhang W; Ren L; Sun R; Xu JB; Wong CP
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2892-2902. PubMed ID: 31860260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal conductivity of graphene under biaxial strain: an analysis of spectral phonon properties.
    K V S D; Kannam SK; Sathian SP
    Nanotechnology; 2020 Aug; 31(34):345703. PubMed ID: 32369790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bilateral substrate effect on the thermal conductivity of two-dimensional silicon.
    Zhang X; Bao H; Hu M
    Nanoscale; 2015 Apr; 7(14):6014-22. PubMed ID: 25762032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lateral and flexural thermal transport in stanene/2D-SiC van der Waals heterostructure.
    Ahammed S; Islam MS; Mia I; Park J
    Nanotechnology; 2020 Dec; 31(50):505702. PubMed ID: 33006320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative study of the mechanical and thermal properties of defective ZrC, TiC and SiC.
    Jiang M; Zheng JW; Xiao HY; Liu ZJ; Zu XT
    Sci Rep; 2017 Aug; 7(1):9344. PubMed ID: 28839188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.
    Noshin M; Khan AI; Subrina S
    Nanotechnology; 2018 May; 29(18):185706. PubMed ID: 29438099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust Thermal Transport across the Surface-Active Bonding SiC-on-SiC.
    Ma G; Xiao X; Meng B; Ma Y; Xing X; Wang X; Mu F; Yuan C
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38598525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced field-dependent conductivity and material properties of nano-AlN/micro-SiC/silicone elastomer hybrid composites for electric stress mitigation in high-voltage power modules.
    Wang Q; Chen X; Huang X; Muhammad A; Paramane A; Ren N
    Nanotechnology; 2022 Sep; 33(47):. PubMed ID: 35981500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on the Influence of Graphene Content Variation on the Microstructure Evolution and Properties of Laser Additive Manufacturing Nickel-Based/SiC Composite Cladding Layer on Aluminum Alloy Surface.
    Sun F; Li X; Zheng K; Han B; Li Y; Zang Y; Pang M
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431704
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites.
    Yao Y; Zhu X; Zeng X; Sun R; Xu JB; Wong CP
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9669-9678. PubMed ID: 29488374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal transport in graphene oxide--from ballistic extreme to amorphous limit.
    Mu X; Wu X; Zhang T; Go DB; Luo T
    Sci Rep; 2014 Jan; 4():3909. PubMed ID: 24468660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal Transport in Multidimensional Silicon-Graphene Hybrid Nanostructures.
    Gong W; Garg R; Guo R; Lee S; Cohen-Karni T; Shen S
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50206-50212. PubMed ID: 34662104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic scattering leads to anomalous thermal conductivity of n-type cubic silicon carbide in the high-temperature region.
    Fang XY; Wang K; Hou ZL; Jin HB; Li YQ; Cao MS
    J Phys Condens Matter; 2012 Nov; 24(44):445802. PubMed ID: 23053061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lateral Heterostructure Formed by Highly Thermally Conductive Fluorinated Graphene for Efficient Device Thermal Management.
    Wang F; Liu Z; Li J; Huang J; Fang L; Wang X; Dai R; Li K; Zhang R; Yang X; Yue Y; Wang Z; Gao Y; Yang K; Zhang L; Xin G
    Adv Sci (Weinh); 2024 Jul; 11(25):e2401586. PubMed ID: 38666496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First-principles calculations of the electronic properties of SiC-based bilayer and trilayer heterostructures.
    Li S; Sun M; Chou JP; Wei J; Xing H; Hu A
    Phys Chem Chem Phys; 2018 Oct; 20(38):24726-24734. PubMed ID: 30225488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal conductivity predictions of herringbone graphite nanofibers using molecular dynamics simulations.
    Khadem MH; Wemhoff AP
    J Chem Phys; 2013 Feb; 138(8):084708. PubMed ID: 23464173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.