These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 35335965)
1. Prediction of Solid-State Form of SLS 3D Printed Medicines Using NIR and Raman Spectroscopy. Trenfield SJ; Januskaite P; Goyanes A; Wilsdon D; Rowland M; Gaisford S; Basit AW Pharmaceutics; 2022 Mar; 14(3):. PubMed ID: 35335965 [TBL] [Abstract][Full Text] [Related]
2. Releasing fast and slow: Non-destructive prediction of density and drug release from SLS 3D printed tablets using NIR spectroscopy. Trenfield SJ; Xu X; Goyanes A; Rowland M; Wilsdon D; Gaisford S; Basit AW Int J Pharm X; 2023 Dec; 5():100148. PubMed ID: 36590827 [TBL] [Abstract][Full Text] [Related]
3. Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process. Goyanes A; Allahham N; Trenfield SJ; Stoyanov E; Gaisford S; Basit AW Int J Pharm; 2019 Aug; 567():118471. PubMed ID: 31252147 [TBL] [Abstract][Full Text] [Related]
4. Non-destructive dose verification of two drugs within 3D printed polyprintlets. Trenfield SJ; Tan HX; Goyanes A; Wilsdon D; Rowland M; Gaisford S; Basit AW Int J Pharm; 2020 Mar; 577():119066. PubMed ID: 31982555 [TBL] [Abstract][Full Text] [Related]
5. 3D printed drug products: Non-destructive dose verification using a rapid point-and-shoot approach. Trenfield SJ; Goyanes A; Telford R; Wilsdon D; Rowland M; Gaisford S; Basit AW Int J Pharm; 2018 Oct; 549(1-2):283-292. PubMed ID: 30077760 [TBL] [Abstract][Full Text] [Related]
6. A case study on decentralized manufacturing of 3D printed medicines. Seoane-Viaño I; Xu X; Ong JJ; Teyeb A; Gaisford S; Campos-Álvarez A; Stulz A; Marcuta C; Kraschew L; Mohr W; Basit AW; Goyanes A Int J Pharm X; 2023 Dec; 5():100184. PubMed ID: 37396623 [TBL] [Abstract][Full Text] [Related]
7. Selective laser sintering (SLS) 3D printing of medicines. Fina F; Goyanes A; Gaisford S; Basit AW Int J Pharm; 2017 Aug; 529(1-2):285-293. PubMed ID: 28668582 [TBL] [Abstract][Full Text] [Related]
8. The use of near-infrared as process analytical technology (PAT) during 3D printing tablets at the point-of-care. Yang TL; Szewc J; Zhong L; Leonova A; Giebułtowicz J; Habashy R; Isreb A; Alhnan MA Int J Pharm; 2023 Jul; 642():123073. PubMed ID: 37230372 [TBL] [Abstract][Full Text] [Related]
9. Synergistic application of twin-screw granulation and selective laser sintering 3D printing for the development of pharmaceutical dosage forms with enhanced dissolution rates and physical properties. Thakkar R; Zhang Y; Zhang J; Maniruzzaman M Eur J Pharm Biopharm; 2021 Jun; 163():141-156. PubMed ID: 33838262 [TBL] [Abstract][Full Text] [Related]
10. Impact of Laser Speed and Drug Particle Size on Selective Laser Sintering 3D Printing of Amorphous Solid Dispersions. Thakkar R; Jara MO; Swinnea S; Pillai AR; Maniruzzaman M Pharmaceutics; 2021 Jul; 13(8):. PubMed ID: 34452109 [TBL] [Abstract][Full Text] [Related]
11. Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetron. Allahham N; Fina F; Marcuta C; Kraschew L; Mohr W; Gaisford S; Basit AW; Goyanes A Pharmaceutics; 2020 Jan; 12(2):. PubMed ID: 32019101 [TBL] [Abstract][Full Text] [Related]
12. 3D printing: Principles and pharmaceutical applications of selective laser sintering. Awad A; Fina F; Goyanes A; Gaisford S; Basit AW Int J Pharm; 2020 Aug; 586():119594. PubMed ID: 32622811 [TBL] [Abstract][Full Text] [Related]
13. Detecting Crystallinity Using Terahertz Spectroscopy in 3D Printed Amorphous Solid Dispersions. Santitewagun S; Thakkar R; Zeitler JA; Maniruzzaman M Mol Pharm; 2022 Jul; 19(7):2380-2389. PubMed ID: 35670498 [TBL] [Abstract][Full Text] [Related]
14. Volumetric printing and non-destructive drug quantification of water-soluble supramolecular hydrogels. Ong JJ; Jørgensen AK; Zhu Z; Telford R; Davies PJ; Gaisford S; Goyanes A; Basit AW Drug Deliv Transl Res; 2024 Oct; ():. PubMed ID: 39424706 [TBL] [Abstract][Full Text] [Related]
15. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Fina F; Madla CM; Goyanes A; Zhang J; Gaisford S; Basit AW Int J Pharm; 2018 Apr; 541(1-2):101-107. PubMed ID: 29454028 [TBL] [Abstract][Full Text] [Related]
16. 3D-printing of lopinavir printlets by selective laser sintering and quantification of crystalline fraction by XRPD-chemometric models. Hamed R; Mohamed EM; Rahman Z; Khan MA Int J Pharm; 2021 Jan; 592():120059. PubMed ID: 33171261 [TBL] [Abstract][Full Text] [Related]
17. Recent Advances in the Production of Pharmaceuticals Using Selective Laser Sintering. Balasankar A; Anbazhakan K; Arul V; Mutharaian VN; Sriram G; Aruchamy K; Oh TH; Ramasundaram S Biomimetics (Basel); 2023 Jul; 8(4):. PubMed ID: 37622935 [TBL] [Abstract][Full Text] [Related]
18. Towards point-of-care manufacturing and analysis of immediate-release 3D printed hydrocortisone tablets for the treatment of congenital adrenal hyperplasia. Yang TL; Stogiannari M; Janeczko S; Khoshan M; Lin Y; Isreb A; Habashy R; Giebułtowicz J; Peak M; Alhnan MA Int J Pharm; 2023 Jul; 642():123072. PubMed ID: 37230368 [TBL] [Abstract][Full Text] [Related]
19. Development of Composite, Reinforced, Highly Drug-Loaded Pharmaceutical Printlets Manufactured by Selective Laser Sintering-In Search of Relevant Excipients for Pharmaceutical 3D Printing. Kulinowski P; Malczewski P; Łaszcz M; Baran E; Milanowski B; Kuprianowicz M; Dorożyński P Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329594 [TBL] [Abstract][Full Text] [Related]
20. Development and Evaluation of Amorphous Oral Thin Films Using Solvent-Free Processes: Comparison between 3D Printing and Hot-Melt Extrusion Technologies. Zhang J; Lu A; Thakkar R; Zhang Y; Maniruzzaman M Pharmaceutics; 2021 Oct; 13(10):. PubMed ID: 34683906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]