These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35336090)

  • 1. Low-Temperature Biodegradation of Lignin-Derived Aromatic Model Monomers by the Cold-Adapted Yeast
    Margesin R; Ludwikowski TM; Kutzner A; Wagner AO
    Microorganisms; 2022 Feb; 10(3):. PubMed ID: 35336090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of lignin monomers and bioconversion of ferulic acid to vanillic acid by Paraburkholderia aromaticivorans AR20-38 isolated from Alpine forest soil.
    Margesin R; Volgger G; Wagner AO; Zhang D; Poyntner C
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2967-2977. PubMed ID: 33687503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of Lignin Monomers Vanillic, p-Coumaric, and Syringic Acid by the Bacterial Strain, Sphingobacterium sp. HY-H.
    Wang J; Liang J; Gao S
    Curr Microbiol; 2018 Sep; 75(9):1156-1164. PubMed ID: 29750329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of trans-ferulic and p-coumaric acid by Acinetobacter calcoaceticus DSM 586.
    Delneri D; Degrassi G; Rizzo R; Bruschi CV
    Biochim Biophys Acta; 1995 Jun; 1244(2-3):363-7. PubMed ID: 7599157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic Degradation of Syringic Acid by an Adapted Strain of Rhodopseudomonas palustris.
    Oshlag JZ; Ma Y; Morse K; Burger BT; Lemke RA; Karlen SD; Myers KS; Donohue TJ; Noguera DR
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31732577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic analysis of
    Morya R; Kumar M; Singh SS; Thakur IS
    Biotechnol Biofuels; 2019; 12():277. PubMed ID: 31788027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization marine bacteria capable of degrading lignin-derived compounds.
    Lu P; Wang W; Zhang G; Li W; Jiang A; Cao M; Zhang X; Xing K; Peng X; Yuan B; Feng Z
    PLoS One; 2020; 15(10):e0240187. PubMed ID: 33027312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 9. Isolation and characterization of Streptomyces sp. NL15-2K capable of degrading lignin-related aromatic compounds.
    Nishimura M; Ooi O; Davies J
    J Biosci Bioeng; 2006 Aug; 102(2):124-7. PubMed ID: 17027874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods.
    Tang PL; Hassan O; Maskat MY; Badri K
    Biomed Res Int; 2015; 2015():891539. PubMed ID: 26798644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic biodegradation of eleven aromatic compounds to methane.
    Healy JB; Young LY
    Appl Environ Microbiol; 1979 Jul; 38(1):84-9. PubMed ID: 16345419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts.
    Bergauer P; Fonteyne PA; Nolard N; Schinner F; Margesin R
    Chemosphere; 2005 May; 59(7):909-18. PubMed ID: 15823324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic and metabolomic analysis reveals the potential mechanisms underlying the improvement of β-carotene and torulene production in Rhodosporidiobolus colostri under low temperature treatment.
    Li C; Xu Y; Li Z; Cheng P; Yu G
    Food Res Int; 2022 Jun; 156():111158. PubMed ID: 35651024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rapid colorimetric screening method for vanillic acid and vanillin-producing bacterial strains.
    Zamzuri NA; Abd-Aziz S; Rahim RA; Phang LY; Alitheen NB; Maeda T
    J Appl Microbiol; 2014 Apr; 116(4):903-10. PubMed ID: 24314059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts.
    Margesin R; Fonteyne PA; Redl B
    Res Microbiol; 2005; 156(1):68-75. PubMed ID: 15636749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocatechuic acid production from lignin-associated phenolics.
    Upadhyay P; Lali A
    Prep Biochem Biotechnol; 2021; 51(10):979-984. PubMed ID: 33583338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THE PROPERTIES OF SYRINGYL, GUAIACYL AND P-HYDROXYPHENYL ARTIFICIAL LIGNINS.
    BLAND DE; LOGAN AF
    Biochem J; 1965 May; 95(2):515-20. PubMed ID: 14340102
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Turchetti B; Selbmann L; Gunde-Cimerman N; Buzzini P; Sampaio JP; Zalar P
    Life (Basel); 2018 May; 8(2):. PubMed ID: 29734727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp. WJDL-Y2.
    Duan J; Huo X; Du WJ; Liang JD; Wang DQ; Yang SC
    Lett Appl Microbiol; 2016 Jan; 62(1):55-62. PubMed ID: 26465801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic modeling of anaerobic degradation of plant-derived aromatic mixtures by Rhodopseudomonas palustris.
    Ma Y; Donohue TJ; Noguera DR
    Biodegradation; 2021 Apr; 32(2):179-192. PubMed ID: 33675449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.