These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 3533613)

  • 1. [Morphological transition in Candida albicans].
    Hagihara Y; Cho T
    Fukuoka Shika Daigaku Gakkai Zasshi; 1986; 13(1):1-17. PubMed ID: 3533613
    [No Abstract]   [Full Text] [Related]  

  • 2. [Characteristics and clinical effects of Candida albicans].
    Matysiak M
    Actual Odontostomatol (Paris); 1983 Jun; (142):365-81. PubMed ID: 6359826
    [No Abstract]   [Full Text] [Related]  

  • 3. Autophagy in Candida albicans.
    Palmer GE
    Methods Enzymol; 2008; 451():311-22. PubMed ID: 19185729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of vitronectin and fibronectin binding by Candida albicans yeast cells.
    Jakab E; Paulsson M; Ascencio F; Ljungh A
    APMIS; 1993 Mar; 101(3):187-93. PubMed ID: 7685178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tcc1p, a novel protein containing the tetratricopeptide repeat motif, interacts with Tup1p to regulate morphological transition and virulence in Candida albicans.
    Kaneko A; Umeyama T; Utena-Abe Y; Yamagoe S; Niimi M; Uehara Y
    Eukaryot Cell; 2006 Nov; 5(11):1894-905. PubMed ID: 16998076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between cell morphology and intracellular potassium concentration in Candida albicans.
    Watanabe H; Azuma M; Igarashi K; Ooshima H
    J Antibiot (Tokyo); 2006 May; 59(5):281-7. PubMed ID: 16883777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [In vitro activity of gallic acid against Candida albicans biofilms].
    Wang C; Cheng H; Guan Y; Wang Y; Yun Y
    Zhongguo Zhong Yao Za Zhi; 2009 May; 34(9):1137-40. PubMed ID: 19685753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida albicans protein analysis during hyphal differentiation using an integrative HA-tagging method.
    Lee KH; Jun S; Hur HS; Ryu JJ; Kim J
    Biochem Biophys Res Commun; 2005 Nov; 337(3):784-90. PubMed ID: 16212935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Formation of plaque in vitro by Candida albicans and the action of chlorhexidine].
    Martí RA; Leyba de Martí B; Agostinello NC; Nasello MR
    Rev Fac Odontol Univ Nac (Cordoba); 1981; 13(1-2):69-76. PubMed ID: 6764687
    [No Abstract]   [Full Text] [Related]  

  • 10. [Adherence of Candida albicans to tissue cells of the denture-bearing mucosa in comparative in vitro studies].
    Majewski S; Macura AB
    Protet Stomatol; 1984; 34(5):261-5. PubMed ID: 6399122
    [No Abstract]   [Full Text] [Related]  

  • 11. Chlamydosporulation of Candida albicans and Candida dubliniensis on mustard agar.
    Girish Kumar CP; Menon T; Prabu D; Nandhakumar B
    Mycoses; 2007 Jan; 50(1):71-3. PubMed ID: 17302752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemoglobin is utilized by Candida albicans in the hyphal form but not yeast form.
    Tanaka WT; Nakao N; Mikami T; Matsumoto T
    Biochem Biophys Res Commun; 1997 Mar; 232(2):350-3. PubMed ID: 9125179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Candida albicans FAR1 in regulation of pheromone-mediated mating, gene expression and cell cycle arrest.
    Côte P; Whiteway M
    Mol Microbiol; 2008 Apr; 68(2):392-404. PubMed ID: 18346117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repression of CDC28 reduces the expression of the morphology-related transcription factors, Efg1p, Nrg1p, Rbf1p, Rim101p, Fkh2p and Tec1p and induces cell elongation in Candida albicans.
    Umeyama T; Kaneko A; Niimi M; Uehara Y
    Yeast; 2006 May; 23(7):537-52. PubMed ID: 16710830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of proteins highly expressed in the hyphae of Candida albicans by two-dimensional electrophoresis.
    Choi W; Yoo YJ; Kim M; Shin D; Jeon HB; Choi W
    Yeast; 2003 Sep; 20(12):1053-60. PubMed ID: 12961753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydospore formation in Candida albicans and Candida dubliniensis--an enigmatic developmental programme.
    Staib P; Morschhäuser J
    Mycoses; 2007 Jan; 50(1):1-12. PubMed ID: 17302741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis.
    Staib P; Morschhäuser J
    Mol Microbiol; 2005 Jan; 55(2):637-52. PubMed ID: 15659176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antagonistic interplay of Swi1 and Tup1 on filamentous growth of Candida albicans.
    Mao X; Li Y; Wang H; Cao F; Chen J
    FEMS Microbiol Lett; 2008 Aug; 285(2):233-41. PubMed ID: 18564337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunodetection of CD45 epitopes on the surface of Candida albicans cells in culture and infected human tissues.
    Monteagudo C; Lopez-Ribot JL; Murgui A; Casanova M; Chaffin WL; Martinez JP
    Am J Clin Pathol; 2000 Jan; 113(1):59-63. PubMed ID: 10631858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A history of research on yeasts 12: medical yeasts part 1, Candida albicans.
    Barnett JA
    Yeast; 2008 Jun; 25(6):385-417. PubMed ID: 18509848
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.