These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 35336185)

  • 21. Biosorbents for heavy metals removal and their future.
    Wang J; Chen C
    Biotechnol Adv; 2009; 27(2):195-226. PubMed ID: 19103274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: Advances and ecological risk assessment.
    Wu C; Li F; Yi S; Ge F
    J Environ Manage; 2021 Oct; 296():113185. PubMed ID: 34243092
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heavy Metal Pollution in the Environment and Its Impact on Health: Exploring Green Technology for Remediation.
    Das S; Sultana KW; Ndhlala AR; Mondal M; Chandra I
    Environ Health Insights; 2023; 17():11786302231201259. PubMed ID: 37808962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms.
    Leong YK; Chang JS
    Bioresour Technol; 2020 May; 303():122886. PubMed ID: 32046940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Yeasts--biosorbents of heavy metals].
    Podgorskiĭ VS; Kasatkina TP; Lozovaia OG
    Mikrobiol Z; 2004; 66(1):91-103. PubMed ID: 15104060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review.
    Ojuederie OB; Babalola OO
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospective of Microbial Exopolysaccharide for Heavy Metal Exclusion.
    Mohite BV; Koli SH; Narkhede CP; Patil SN; Patil SV
    Appl Biochem Biotechnol; 2017 Oct; 183(2):582-600. PubMed ID: 28889346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review on the clean-up technologies for heavy metal ions contaminated soil samples.
    Kumar V; Rout C; Singh J; Saharan Y; Goyat R; Umar A; Akbar S; Baskoutas S
    Heliyon; 2023 May; 9(5):e15472. PubMed ID: 37180942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioremediation Options for Heavy Metal Pollution.
    Kapahi M; Sachdeva S
    J Health Pollut; 2019 Dec; 9(24):191203. PubMed ID: 31893164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An ecofriendly approach for bioremediation of contaminated water environment: Potential contribution of a coastal seaweed community to environmental improvement.
    Deniz F; Ersanli ET
    Int J Phytoremediation; 2018 Feb; 20(3):256-263. PubMed ID: 29053345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal bioremediation through growing cells.
    Malik A
    Environ Int; 2004 Apr; 30(2):261-78. PubMed ID: 14749114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A renewable biosorbent material for green decontamination of heavy metal pollution from aquatic medium: a case study on manganese removal.
    Deniz F; Tezel Ersanli E
    Int J Phytoremediation; 2021; 23(3):231-237. PubMed ID: 32820944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of heavy metal removal using microorganisms as biosorbent.
    Javanbakht V; Alavi SA; Zilouei H
    Water Sci Technol; 2014; 69(9):1775-87. PubMed ID: 24804650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling heavy metal removal by retention on
    Gümüş D; Gümüş F
    Int J Phytoremediation; 2020; 22(7):755-763. PubMed ID: 31916451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to 'clean-up' heavy metal contaminants from water.
    Nanda M; Kumar V; Sharma DK
    Aquat Toxicol; 2019 Jul; 212():1-10. PubMed ID: 31022608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dioxin- and POP-contaminated sites--contemporary and future relevance and challenges: overview on background, aims and scope of the series.
    Weber R; Gaus C; Tysklind M; Johnston P; Forter M; Hollert H; Heinisch E; Holoubek I; Lloyd-Smith M; Masunaga S; Moccarelli P; Santillo D; Seike N; Symons R; Torres JP; Verta M; Varbelow G; Vijgen J; Watson A; Costner P; Woelz J; Wycisk P; Zennegg M
    Environ Sci Pollut Res Int; 2008 Jul; 15(5):363-93. PubMed ID: 18597132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future prospect.
    Kumar A; Yadav AN; Mondal R; Kour D; Subrahmanyam G; Shabnam AA; Khan SA; Yadav KK; Sharma GK; Cabral-Pinto M; Fagodiya RK; Gupta DK; Hota S; Malyan SK
    Chemosphere; 2021 Dec; 284():131325. PubMed ID: 34216922
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosorption of heavy metals.
    Volesky B; Holan ZR
    Biotechnol Prog; 1995; 11(3):235-50. PubMed ID: 7619394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heavy metal adsorption onto agro-based waste materials: a review.
    Demirbas A
    J Hazard Mater; 2008 Sep; 157(2-3):220-9. PubMed ID: 18291580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The potential use of natural vs commercial biosorbent material to remediate stream waters by removing heavy metal contaminants.
    Richards S; Dawson J; Stutter M
    J Environ Manage; 2019 Feb; 231():275-281. PubMed ID: 30347346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.