These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35336315)

  • 1. Attention-Based Temporal-Frequency Aggregation for Speaker Verification.
    Wang M; Feng D; Su T; Chen M
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ResSKNet-SSDP: Effective and Light End-To-End Architecture for Speaker Recognition.
    Deng F; Deng L; Jiang P; Zhang G; Yang Q
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bidirectional Attention for Text-Dependent Speaker Verification.
    Fang X; Gao T; Zou L; Ling Z
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33261046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-MONA: A dilated mixed-order non-local attention network for speaker and language recognition.
    Miao X; McLoughlin I; Wang W; Zhang P
    Neural Netw; 2021 Jul; 139():201-211. PubMed ID: 33780726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Few-shot short utterance speaker verification using meta-learning.
    Wang W; Zhao H; Yang Y; Chang Y; You H
    PeerJ Comput Sci; 2023; 9():e1276. PubMed ID: 37346533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H-VECTORS: Improving the robustness in utterance-level speaker embeddings using a hierarchical attention model.
    Shi Y; Huang Q; Hain T
    Neural Netw; 2021 Oct; 142():329-339. PubMed ID: 34098246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lambda-vector modeling temporal and channel interactions for text-independent speaker verification.
    Wei G; Min H; Xu Y; Zhang Y
    Sci Rep; 2022 Oct; 12(1):18171. PubMed ID: 36307520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BPCNN: Bi-Point Input for Convolutional Neural Networks in Speaker Spoofing Detection.
    Yoon S; Yu HJ
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonetic variability constrained bottleneck features for joint speaker recognition and physical task stress detection.
    Zhang C; Hansen JHL
    J Acoust Soc Am; 2020 Nov; 148(5):2912. PubMed ID: 33261416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utterance Level Feature Aggregation with Deep Metric Learning for Speech Emotion Recognition.
    Mocanu B; Tapu R; Zaharia T
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identity Vector Extraction by Perceptual Wavelet Packet Entropy and Convolutional Neural Network for Voice Authentication.
    Lei L; She K
    Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning hidden patterns from patient multivariate time series data using convolutional neural networks: A case study of healthcare cost prediction.
    Morid MA; Sheng ORL; Kawamoto K; Abdelrahman S
    J Biomed Inform; 2020 Nov; 111():103565. PubMed ID: 32980530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting the locus of auditory attention based on the spectro-spatial-temporal analysis of EEG.
    Jiang Y; Chen N; Jin J
    J Neural Eng; 2022 Oct; 19(5):. PubMed ID: 36195065
    [No Abstract]   [Full Text] [Related]  

  • 14. Combination of deep speaker embeddings for diarisation.
    Sun G; Zhang C; Woodland PC
    Neural Netw; 2021 Sep; 141():372-384. PubMed ID: 33984663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-granularity convolutional neural network model with temporal information and attention mechanism for efficient diabetes medical cost prediction.
    Luo M; Wang YT; Wang XK; Hou WH; Huang RL; Liu Y; Wang JQ
    Comput Biol Med; 2022 Dec; 151(Pt A):106246. PubMed ID: 36343403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Supervised Open-Set Speaker Recognition with Laguerre-Voronoi Descriptors.
    Ohi AQ; Gavrilova ML
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG.
    Zhang J; Yao R; Ge W; Gao J
    Comput Methods Programs Biomed; 2020 Jan; 183():105089. PubMed ID: 31586788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Density Surface EMG-Based Gesture Recognition Using a 3D Convolutional Neural Network.
    Chen J; Bi S; Zhang G; Cao G
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Convolutional Neural Networks for large-scale speech tasks.
    Sainath TN; Kingsbury B; Saon G; Soltau H; Mohamed AR; Dahl G; Ramabhadran B
    Neural Netw; 2015 Apr; 64():39-48. PubMed ID: 25439765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipreading Architecture Based on Multiple Convolutional Neural Networks for Sentence-Level Visual Speech Recognition.
    Jeon S; Elsharkawy A; Kim MS
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.