These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35336435)

  • 1. A Field Calibration Solution to Achieve High-Grade-Level Performance for Low-Cost Dual-Frequency GNSS Receiver and Antennas.
    Krietemeyer A; van der Marel H; van de Giesen N; Ten Veldhuis MC
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the Performance of Multi-Frequency Low-Cost GNSS Receivers and Antennas.
    Hamza V; Stopar B; Sterle O
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Cost Dual-Frequency GNSS Receivers and Antennas for Surveying in Urban Areas.
    Hamza V; Stopar B; Sterle O; Pavlovčič-Prešeren P
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Cost GNSS and PPP-RTK: Investigating the Capabilities of the u-blox ZED-F9P Module.
    Robustelli U; Cutugno M; Pugliano G
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of Low-Cost GNSS Receiver under Demanding Conditions in RTK Network Mode.
    Janos D; Kuras P
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of Low-Cost Receivers in Base-Rover Configuration with Geodetic-Grade Antennas.
    Sanna G; Pisanu T; Garau S
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying.
    Wielgocka N; Hadas T; Kaczmarek A; Marut G
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing Multi-Frequency Low-Cost GNSS Receivers for Geodetic Monitoring Purposes.
    Hamza V; Stopar B; Ambrožič T; Turk G; Sterle O
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysing the Zenith Tropospheric Delay Estimates in On-line Precise Point Positioning (PPP) Services and PPP Software Packages.
    Mendez Astudillo J; Lau L; Tang YT; Moore T
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Using GPS L2 Receiver Antenna Corrections for the Galileo E5a Frequency on Position Estimates.
    Araszkiewicz A; Kiliszek D
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University.
    Hu Z; Zhao Q; Chen G; Wang G; Dai Z; Li T
    Sensors (Basel); 2015 Nov; 15(11):28717-31. PubMed ID: 26580616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GNSS-R with Low-Cost Receivers for Retrieval of Antenna Height from Snow Surfaces Using Single-Frequency Observations.
    Rover S; Vitti A
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive Analysis of Xiaomi Mi 8 GNSS Antenna Performance.
    Zabala Haro M; Martín Furones Á; Anquela Julián A; Jiménez-Martínez MJ
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An SVM Based Weight Scheme for Improving Kinematic GNSS Positioning Accuracy with Low-Cost GNSS Receiver in Urban Environments.
    Lyu Z; Gao Y
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic Zenith Tropospheric Delay Estimation with GNSS PPP in Mountainous Areas.
    Gratton P; Banville S; Lachapelle G; O'Keefe K
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing and Testing an IoT Low-Cost PPP-RTK Augmented GNSS Location Device.
    Amalfitano D; Cutugno M; Robustelli U; Pugliano G
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Static Positioning under Tree Canopy Using Low-Cost GNSS Receivers and Adapted RTKLIB Software.
    Tomaštík J; Everett T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise and Robust RTK-GNSS Positioning in Urban Environments with Dual-Antenna Configuration.
    Fan P; Li W; Cui X; Lu M
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring GNSS Crowdsourcing Feasibility: Combinations of Measurements for Modeling Smartphone and Higher End GNSS Receiver Performance.
    Lehtola VV; Söderholm S; Koivisto M; Montloin L
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31323965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the Antenna Phase Center for the High-Precision Positioning of Smartphones.
    Shen F; Hu Q; Gong C
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.