These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35336525)

  • 1. Tiny Vehicle Detection for Mid-to-High Altitude UAV Images Based on Visual Attention and Spatial-Temporal Information.
    Yu R; Li H; Jiang Y; Zhang B; Wang Y
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Network Framework on Simultaneous Road Segmentation and Vehicle Detection for UAV Aerial Traffic Images.
    Xiao M; Min W; Yang C; Song Y
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Vehicle-Detection Method in Bird-View Unmanned-Aerial-Vehicle Imagery.
    Han S; Yoo J; Kwon S
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIT-UAV: A high-altitude infrared thermal dataset for Unmanned Aerial Vehicle-based object detection.
    Suo J; Wang T; Zhang X; Chen H; Zhou W; Shi W
    Sci Data; 2023 Apr; 10(1):227. PubMed ID: 37080987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of the power lines in UAV remote sensed images using spectral-spatial methods.
    Bhola R; Krishna NH; Ramesh KN; Senthilnath J; Anand G
    J Environ Manage; 2018 Jan; 206():1233-1242. PubMed ID: 28931461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios.
    Wang G; Chen Y; An P; Hong H; Hu J; Huang T
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hybrid Vehicle Detection Method Based on Viola-Jones and HOG + SVM from UAV Images.
    Xu Y; Yu G; Wang Y; Wu X; Ma Y
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Vehicle Detection from UAV Aerial Images Based on Improved YOLOv5.
    Li S; Yang X; Lin X; Zhang Y; Wu J
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the Localization Accuracy of UAV Images under GNSS Denial Conditions.
    Gao H; Yu Y; Huang X; Song L; Li L; Li L; Zhang L
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel dual-pooling attention module for UAV vehicle re-identification.
    Guo X; Yang J; Jia X; Zang C; Xu Y; Chen Z
    Sci Rep; 2024 Jan; 14(1):2027. PubMed ID: 38263413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.
    Borra-Serrano I; Peña JM; Torres-Sánchez J; Mesas-Carrascosa FJ; López-Granados F
    Sensors (Basel); 2015 Aug; 15(8):19688-708. PubMed ID: 26274960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.
    Huang KL; Chiu CC; Chiu SY; Teng YJ; Hao SS
    Sensors (Basel); 2015 Jul; 15(7):16848-65. PubMed ID: 26184213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vehicle Detection From UAV Imagery With Deep Learning: A Review.
    Bouguettaya A; Zarzour H; Kechida A; Taberkit AM
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6047-6067. PubMed ID: 34029200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Lightweight YOLOX for Small Object Wildfire Detection in UAV Imagery.
    Luan T; Zhou S; Zhang G; Song Z; Wu J; Pan W
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal segmentation scale selection and evaluation of cultivated land objects based on high-resolution remote sensing images with spectral and texture features.
    Lu H; Liu C; Li N; Fu X; Li L
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):27067-27083. PubMed ID: 33501583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the Branch of Kiwifruit Based on Unmanned Aerial Vehicle (UAV) Images Using Deep Learning Method.
    Niu Z; Deng J; Zhang X; Zhang J; Pan S; Mu H
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting Intra-Field Variation in Rice Yield With Unmanned Aerial Vehicle Imagery and Deep Learning.
    Bellis ES; Hashem AA; Causey JL; Runkle BRK; Moreno-García B; Burns BW; Green VS; Burcham TN; Reba ML; Huang X
    Front Plant Sci; 2022; 13():716506. PubMed ID: 35401643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecology.].
    Sun ZY; Chen YQ; Yang L; Tang GL; Yuan SX; Lin ZW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):528-536. PubMed ID: 29749161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SFHG-YOLO: A Simple Real-Time Small-Object-Detection Method for Estimating Pineapple Yield from Unmanned Aerial Vehicles.
    Yu G; Wang T; Guo G; Liu H
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.