These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35336744)

  • 1. Climate Change and Vector-Borne Diseases in China: A Review of Evidence and Implications for Risk Management.
    Wu Y; Huang C
    Biology (Basel); 2022 Feb; 11(3):. PubMed ID: 35336744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate Change Drives the Transmission and Spread of Vector-Borne Diseases: An Ecological Perspective.
    Ma J; Guo Y; Gao J; Tang H; Xu K; Liu Q; Xu L
    Biology (Basel); 2022 Nov; 11(11):. PubMed ID: 36358329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation.
    Proestos Y; Christophides GK; Ergüler K; Tanarhte M; Waldock J; Lelieveld J
    Philos Trans R Soc Lond B Biol Sci; 2015 Apr; 370(1665):. PubMed ID: 25688015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change and threat of vector-borne diseases in India: are we prepared?
    Dhiman RC; Pahwa S; Dhillon GP; Dash AP
    Parasitol Res; 2010 Mar; 106(4):763-73. PubMed ID: 20155369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential impact of climate change on emerging vector-borne and other infections in the UK.
    Baylis M
    Environ Health; 2017 Dec; 16(Suppl 1):112. PubMed ID: 29219091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: a scoping review of reviews.
    Kulkarni MA; Duguay C; Ost K
    Global Health; 2022 Jan; 18(1):1. PubMed ID: 34980187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vector-borne diseases and climate change: a European perspective.
    Semenza JC; Suk JE
    FEMS Microbiol Lett; 2018 Feb; 365(2):. PubMed ID: 29149298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the spatial distribution of scientific publications regarding vector-borne diseases related to climate variability in South America.
    López MS; Müller GV; Sione WF
    Spat Spatiotemporal Epidemiol; 2018 Aug; 26():35-93. PubMed ID: 30390933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential distribution and dynamics of important vectors Culex pipiens pallens and Culex pipiens quinquefasciatus in China under climate change scenarios: an ecological niche modelling approach.
    Liu B; Gao X; Zheng K; Ma J; Jiao Z; Xiao J; Wang H
    Pest Manag Sci; 2020 Sep; 76(9):3096-3107. PubMed ID: 32281209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change and vector-borne diseases of public health significance.
    Ogden NH
    FEMS Microbiol Lett; 2017 Oct; 364(19):. PubMed ID: 28957457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe.
    Bezirtzoglou C; Dekas K; Charvalos E
    Anaerobe; 2011 Dec; 17(6):337-40. PubMed ID: 21664978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of climate change and globalization on mosquito vectors: evidence from Jeju Island, South Korea on the potential for Asian tiger mosquito (Aedes albopictus) influxes and survival from Vietnam rather than Japan.
    Lee SH; Nam KW; Jeong JY; Yoo SJ; Koh YS; Lee S; Heo ST; Seong SY; Lee KH
    PLoS One; 2013; 8(7):e68512. PubMed ID: 23894312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Criteria for the prioritization of public health interventions for climate-sensitive vector-borne diseases in Quebec.
    Hongoh V; Gosselin P; Michel P; Ravel A; Waaub JP; Campagna C; Samoura K
    PLoS One; 2017; 12(12):e0190049. PubMed ID: 29281726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global climate change and its potential impact on disease transmission by salinity-tolerant mosquito vectors in coastal zones.
    Ramasamy R; Surendran SN
    Front Physiol; 2012; 3():198. PubMed ID: 22723781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Barriers to Timely Diagnosis and Treatment of Vector-Borne Diseases in a Changing Climate: A Case Report.
    Memari M; Domney A; Tee CJ; Stathopoulos AG; Chakraborti C
    Public Health Rep; 2023; 138(3):406-409. PubMed ID: 35532006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate drivers of vector-borne diseases in Africa and their relevance to control programmes.
    Thomson MC; Muñoz ÁG; Cousin R; Shumake-Guillemot J
    Infect Dis Poverty; 2018 Aug; 7(1):81. PubMed ID: 30092816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate Crises and Developing Vector-Borne Diseases: A Narrative Review.
    Mojahed N; Mohammadkhani MA; Mohamadkhani A
    Iran J Public Health; 2022 Dec; 51(12):2664-2673. PubMed ID: 36742229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the potential impact of vector-borne disease transmission following heavy rainfall events: a mathematical framework.
    Chowell G; Mizumoto K; Banda JM; Poccia S; Perrings C
    Philos Trans R Soc Lond B Biol Sci; 2019 Jun; 374(1775):20180272. PubMed ID: 31056044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate change and mosquito-borne diseases in China: a review.
    Bai L; Morton LC; Liu Q
    Global Health; 2013 Mar; 9():10. PubMed ID: 23497420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change, vector-borne diseases and working population.
    Vonesch N; D'Ovidio MC; Melis P; Remoli ME; Ciufolini MG; Tomao P
    Ann Ist Super Sanita; 2016; 52(3):397-405. PubMed ID: 27698298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.