These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 35337374)

  • 1. Statistical and machine learning methods for spatially resolved transcriptomics data analysis.
    Zeng Z; Li Y; Li Y; Luo Y
    Genome Biol; 2022 Mar; 23(1):83. PubMed ID: 35337374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding.
    Shen R; Liu L; Wu Z; Zhang Y; Yuan Z; Guo J; Yang F; Zhang C; Chen B; Feng W; Liu C; Guo J; Fan G; Zhang Y; Li Y; Xu X; Yao J
    Nat Commun; 2022 Dec; 13(1):7640. PubMed ID: 36496406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in spatially resolved transcriptomics: challenges and opportunities.
    Lee J; Yoo M; Choi J
    BMB Rep; 2022 Mar; 55(3):113-124. PubMed ID: 35168703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Primer on Preprocessing, Visualization, Clustering, and Phenotyping of Barcode-Based Spatial Transcriptomics Data.
    Ospina O; Soupir A; Fridley BL
    Methods Mol Biol; 2023; 2629():115-140. PubMed ID: 36929076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially resolved transcriptomics and beyond.
    Crosetto N; Bienko M; van Oudenaarden A
    Nat Rev Genet; 2015 Jan; 16(1):57-66. PubMed ID: 25446315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Transcriptomics: Emerging Technologies in Tissue Gene Expression Profiling.
    Robles-Remacho A; Sanchez-Martin RM; Diaz-Mochon JJ
    Anal Chem; 2023 Oct; 95(42):15450-15460. PubMed ID: 37814884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities.
    Miller BF; Bambah-Mukku D; Dulac C; Zhuang X; Fan J
    Genome Res; 2021 Oct; 31(10):1843-1855. PubMed ID: 34035045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Placing RNA in context and space - methods for spatially resolved transcriptomics.
    Strell C; Hilscher MM; Laxman N; Svedlund J; Wu C; Yokota C; Nilsson M
    FEBS J; 2019 Apr; 286(8):1468-1481. PubMed ID: 29542254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of machine learning approaches for cell-type identification from single-cell transcriptomics data.
    Huang Y; Zhang P
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33611343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational solutions for spatial transcriptomics.
    Kleino I; FrolovaitÄ— P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Space: the final frontier - achieving single-cell, spatially resolved transcriptomics in plants.
    Gurazada SGR; Cox KL; Czymmek KJ; Meyers BC
    Emerg Top Life Sci; 2021 May; 5(2):179-188. PubMed ID: 33522561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical and machine learning methods for spatially resolved transcriptomics with histology.
    Hu J; Schroeder A; Coleman K; Chen C; Auerbach BJ; Li M
    Comput Struct Biotechnol J; 2021; 19():3829-3841. PubMed ID: 34285782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of Computational Analysis and Spatial Transcriptomics in Single-cell Studies.
    Wang R; Peng G; Tam PPL; Jing N
    Genomics Proteomics Bioinformatics; 2023 Feb; 21(1):13-23. PubMed ID: 35901961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight.
    Overbey EG; Das S; Cope H; Madrigal P; Andrusivova Z; Frapard S; Klotz R; Bezdan D; Gupta A; Scott RT; Park J; Chirko D; Galazka JM; Costes SV; Mason CE; Herranz R; Szewczyk NJ; Borg J; Giacomello S
    Cell Rep Methods; 2022 Nov; 2(11):100325. PubMed ID: 36452864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial transcriptomics and the kidney.
    Melo Ferreira R; Gisch DL; Eadon MT
    Curr Opin Nephrol Hypertens; 2022 May; 31(3):244-250. PubMed ID: 35125393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing.
    Sun D; Liu Z; Li T; Wu Q; Wang C
    Nucleic Acids Res; 2022 Apr; 50(7):e42. PubMed ID: 35253896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encoding Method of Single-cell Spatial Transcriptomics Sequencing.
    Zhou Y; Jia E; Pan M; Zhao X; Ge Q
    Int J Biol Sci; 2020; 16(14):2663-2674. PubMed ID: 32792863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling Cellular Ecosystems at Single-Cell Resolution and at Scale with EcoTyper.
    Steen CB; Luca BA; Alizadeh AA; Gentles AJ; Newman AM
    Methods Mol Biol; 2023; 2629():43-71. PubMed ID: 36929073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data.
    Hu Y; Hase T; Li HP; Prabhakar S; Kitano H; Ng SK; Ghosh S; Wee LJ
    BMC Genomics; 2016 Dec; 17(Suppl 13):1025. PubMed ID: 28155657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.