These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35337494)

  • 41. Intermolecular interactions and 3D structure in cellulose-NaOH-urea aqueous system.
    Jiang Z; Fang Y; Xiang J; Ma Y; Lu A; Kang H; Huang Y; Guo H; Liu R; Zhang L
    J Phys Chem B; 2014 Aug; 118(34):10250-7. PubMed ID: 25111839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relationship between rheological properties and one-step W/O/W multiple emulsion formation.
    Morais JM; Rocha-Filho PA; Burgess DJ
    Langmuir; 2010 Dec; 26(23):17874-81. PubMed ID: 21033721
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Water-in-oil Pickering emulsions stabilized by an interfacial complex of water-insoluble polyphenol crystals and protein.
    Zembyla M; Murray BS; Radford SJ; Sarkar A
    J Colloid Interface Sci; 2019 Jul; 548():88-99. PubMed ID: 30981966
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Production and characterization of O/W emulsions containing droplets stabilized by lecithin-chitosan-pectin mutilayered membranes.
    Ogawa S; Decker EA; McClements DJ
    J Agric Food Chem; 2004 Jun; 52(11):3595-600. PubMed ID: 15161236
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rheology and stability of water-in-oil-in-water multiple emulsions containing Span 83 and Tween 80.
    Jiao J; Burgess DJ
    AAPS PharmSci; 2003; 5(1):E7. PubMed ID: 12713279
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cellulose Aerogel Microparticles via Emulsion-Coagulation Technique.
    Druel L; Kenkel A; Baudron V; Buwalda S; Budtova T
    Biomacromolecules; 2020 May; 21(5):1824-1831. PubMed ID: 32011867
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interfacial rheology of sodium caseinate/high acyl gellan gum complexes: Stabilizing oil-in-water emulsions.
    Farooq S; Ahmad MI; Abdullah
    Curr Res Food Sci; 2022; 5():234-242. PubMed ID: 35128466
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cellulose-stabilized oil-in-water emulsions: Structural features, microrheology, and stability.
    Costa C; Rosa P; Filipe A; Medronho B; Romano A; Liberman L; Talmon Y; Norgren M
    Carbohydr Polym; 2021 Jan; 252():117092. PubMed ID: 33183583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution.
    Chen X; Chen J; You T; Wang K; Xu F
    Carbohydr Polym; 2015 Jul; 125():85-91. PubMed ID: 25857963
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface.
    Kalashnikova I; Bizot H; Cathala B; Capron I
    Biomacromolecules; 2012 Jan; 13(1):267-75. PubMed ID: 22126590
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Soy glycinin-soyasaponin mixtures at oil-water interface: Interfacial behavior and O/W emulsion stability.
    Zhu L; Xu Q; Liu X; Xu Y; Yang L; Wang S; Li J; He Y; Liu H
    Food Chem; 2020 Oct; 327():127062. PubMed ID: 32454279
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrasound improving the physical stability of oil-in-water emulsions stabilized by almond proteins.
    Zhu Z; Zhao C; Yi J; Cui L; Liu N; Cao Y; Decker EA
    J Sci Food Agric; 2018 Aug; 98(11):4323-4330. PubMed ID: 29427401
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorption of gum Arabic, egg white protein, and their mixtures at the oil-water interface in limonene oil-in-water emulsions.
    Padala SR; Williams PA; Phillips GO
    J Agric Food Chem; 2009 Jun; 57(11):4964-73. PubMed ID: 19422219
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tuning Supramolecular Polymers' Amphiphilicity via Host-Guest Interfacial Recognition for Stabilizing Multiple Pickering Emulsions.
    Yang S; Qin W; He F; Zhao X; Zhou Q; Lin F; Gong H; Zhang S; Yu G; Feng Y; Li J
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51661-51672. PubMed ID: 34696581
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insights into Regional Wetting Behaviors of Amphiphilic Collagen for Dual Separation of Emulsions.
    Chen G; Hao B; Wang Y; Wang Y; Xiao H; Li H; Huang X; Shi B
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18209-18217. PubMed ID: 33845568
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New Pickering emulsions stabilized by bacterial cellulose nanocrystals.
    Kalashnikova I; Bizot H; Cathala B; Capron I
    Langmuir; 2011 Jun; 27(12):7471-9. PubMed ID: 21604688
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of processing factors on the stability of model mayonnaise with whole egg during long-term storage.
    Ariizumi M; Kubo M; Handa A; Hayakawa T; Matsumiya K; Matsumura Y
    Biosci Biotechnol Biochem; 2017 Apr; 81(4):803-811. PubMed ID: 28118791
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Principles of emulsion stabilization with special reference to polymeric surfactants.
    Tadros T
    J Cosmet Sci; 2006; 57(2):153-69. PubMed ID: 16688378
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Iron Encapsulation in Water-in-Oil Emulsions: Effect of Ferrous Sulfate Concentration and Fat Crystal Formation on Oxidative Stability.
    Prichapan N; McClements DJ; Klinkesorn U
    J Food Sci; 2018 Feb; 83(2):309-317. PubMed ID: 29327790
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of diacylglycerol interfacial crystallization on the physical stability of water-in-oil emulsions.
    Yang J; Qiu C; Li G; Lee WJ; Tan CP; Lai OM; Wang Y
    Food Chem; 2020 Oct; 327():127014. PubMed ID: 32434126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.