These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35337507)

  • 41. Hydrolysis pattern analysis of xylem tissues of woody plants pretreated with hydrogen peroxide and acetic acid: rapid saccharification of softwood for economical bioconversion.
    Lee DS; Lee YG; Cho EJ; Song Y; Bae HJ
    Biotechnol Biofuels; 2021 Feb; 14(1):37. PubMed ID: 33549141
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sustainable isolation of nanocellulose from cellulose and lignocellulosic feedstocks: Recent progress and perspectives.
    Jiang J; Zhu Y; Jiang F
    Carbohydr Polym; 2021 Sep; 267():118188. PubMed ID: 34119156
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose.
    Rohaizu R; Wanrosli WD
    Ultrason Sonochem; 2017 Jan; 34():631-639. PubMed ID: 27773290
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A correlation on ultrasonication with nanocrystalline cellulose characteristics.
    Mohd Ishak NA; Khalil I; Abdullah FZ; Muhd Julkapli N
    Carbohydr Polym; 2020 Oct; 246():116553. PubMed ID: 32747237
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Facile production of nanostructured cellulose from Elaeis guineensis empty fruit bunch via one pot oxidative-hydrolysis isolation approach.
    Chen YW; Lee HV; Abd Hamid SB
    Carbohydr Polym; 2017 Feb; 157():1511-1524. PubMed ID: 27987863
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel enzymatic approach to nanocrystalline cellulose preparation.
    Beltramino F; Blanca Roncero M; Vidal T; Valls C
    Carbohydr Polym; 2018 Jun; 189():39-47. PubMed ID: 29580423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pretreatments of Non-Woody Cellulosic Feedstocks for Bacterial Cellulose Synthesis.
    Kashcheyeva EI; Gismatulina YA; Budaeva VV
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31658767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reducing biomass recalcitrance via mild sodium carbonate pretreatment.
    Mirmohamadsadeghi S; Chen Z; Wan C
    Bioresour Technol; 2016 Jun; 209():386-90. PubMed ID: 26972025
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrothermal fractionation of woody biomass: Lignin effect on sugars recovery.
    Yedro FM; Cantero DA; Pascual M; García-Serna J; Cocero MJ
    Bioresour Technol; 2015 Sep; 191():124-32. PubMed ID: 25985415
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Woody biomass as a potential feedstock for fermentative gaseous biofuel production.
    Wijeyekoon SLJ; Vaidya AA
    World J Microbiol Biotechnol; 2021 Jul; 37(8):134. PubMed ID: 34258684
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives.
    Shrestha S; Fonoll X; Khanal SK; Raskin L
    Bioresour Technol; 2017 Dec; 245(Pt A):1245-1257. PubMed ID: 28941664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates.
    Arantes V; Saddler JN
    Biotechnol Biofuels; 2011 Feb; 4():3. PubMed ID: 21310050
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enzymatic saccharification of shrub willow genotypes with differing biomass composition for biofuel production.
    Serapiglia MJ; Humiston MC; Xu H; Hogsett DA; de Orduña RM; Stipanovic AJ; Smart LB
    Front Plant Sci; 2013; 4():57. PubMed ID: 23532212
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel recyclable deep eutectic solvent boost biomass pretreatment for enzymatic hydrolysis.
    Wang ZK; Li H; Lin XC; Tang L; Chen JJ; Mo JW; Yu RS; Shen XJ
    Bioresour Technol; 2020 Jul; 307():123237. PubMed ID: 32229409
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sustainable commercial nanocrystalline cellulose manufacturing process with acid recycling.
    Sarma SJ; Ayadi M; Brar SK; Berry R
    Carbohydr Polym; 2017 Jan; 156():26-33. PubMed ID: 27842822
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance - Conventional processing and recent advances.
    Lorenci Woiciechowski A; Dalmas Neto CJ; Porto de Souza Vandenberghe L; de Carvalho Neto DP; Novak Sydney AC; Letti LAJ; Karp SG; Zevallos Torres LA; Soccol CR
    Bioresour Technol; 2020 May; 304():122848. PubMed ID: 32113832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Properties and characteristics of nanocrystalline cellulose isolated from olive fiber.
    Kian LK; Saba N; Jawaid M; Alothman OY; Fouad H
    Carbohydr Polym; 2020 Aug; 241():116423. PubMed ID: 32507177
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydrolysis of lignocellulosic materials for ethanol production: a review.
    Sun Y; Cheng J
    Bioresour Technol; 2002 May; 83(1):1-11. PubMed ID: 12058826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues.
    Debnath B; Haldar D; Purkait MK
    Carbohydr Polym; 2021 Dec; 273():118537. PubMed ID: 34560949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.