These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 3533778)
1. Interaction of Clostridium difficile and Escherichia coli with microfloras in continuous-flow cultures and gnotobiotic mice. Wilson KH; Freter R Infect Immun; 1986 Nov; 54(2):354-8. PubMed ID: 3533778 [TBL] [Abstract][Full Text] [Related]
2. Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Wilson KH; Perini F Infect Immun; 1988 Oct; 56(10):2610-4. PubMed ID: 3417352 [TBL] [Abstract][Full Text] [Related]
3. Gnotobiotic models for study of the microbial ecology of Clostridium difficile and Escherichia coli. Wilson KH; Sheagren JN; Freter R; Weatherbee L; Lyerly D J Infect Dis; 1986 Mar; 153(3):547-51. PubMed ID: 3512730 [TBL] [Abstract][Full Text] [Related]
4. Continuous-flow cultures as in vitro models of the ecology of large intestinal flora. Freter R; Stauffer E; Cleven D; Holdeman LV; Moore WE Infect Immun; 1983 Feb; 39(2):666-75. PubMed ID: 6339387 [TBL] [Abstract][Full Text] [Related]
5. [Transfer of the cecal flora of the hamster to the germfree C3H mouse: use of this model to study the flora of the anti-Clostridium difficile barrier]. Su WJ; Bourlioux P; Bournaud M; Besnier MO; Fourniat J Can J Microbiol; 1986 Feb; 32(2):132-6. PubMed ID: 3516351 [TBL] [Abstract][Full Text] [Related]
6. Role of volatile fatty acids in colonization resistance to Clostridium difficile in gnotobiotic mice. Su WJ; Waechter MJ; Bourlioux P; Dolegeal M; Fourniat J; Mahuzier G Infect Immun; 1987 Jul; 55(7):1686-91. PubMed ID: 3596806 [TBL] [Abstract][Full Text] [Related]
7. Control of Escherichia coli populations by a combination of indigenous clostridia and lactobacilli in gnotobiotic mice and continuous-flow cultures. Itoh K; Freter R Infect Immun; 1989 Feb; 57(2):559-65. PubMed ID: 2643576 [TBL] [Abstract][Full Text] [Related]
8. Suppression of Clostridium difficile by normal hamster cecal flora and prevention of antibiotic-associated cecitis. Wilson KH; Silva J; Fekety FR Infect Immun; 1981 Nov; 34(2):626-8. PubMed ID: 7309245 [TBL] [Abstract][Full Text] [Related]
9. Efficiency of various bacterial suspensions derived from cecal floras of conventional chickens in reducing the population level of Salmonella typhimurium in gnotobiotic mice and chicken intestines. Hudault S; Bewa H; Bridonneau C; Raibaud P Can J Microbiol; 1985 Sep; 31(9):832-8. PubMed ID: 3910208 [TBL] [Abstract][Full Text] [Related]
10. An anaerobic continuous-flow culture model of interactions between intestinal microflora and Candida albicans. Kennedy MJ; Rogers AL; Yancey RJ Mycopathologia; 1988 Sep; 103(3):125-34. PubMed ID: 3057377 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of Escherichia coli translocation from the gastrointestinal tract by normal cecal flora in gnotobiotic or antibiotic-decontaminated mice. Berg RD Infect Immun; 1980 Sep; 29(3):1073-81. PubMed ID: 6448820 [TBL] [Abstract][Full Text] [Related]
12. Population dynamics of ingested Clostridium difficile in the gastrointestinal tract of the Syrian hamster. Wilson KH; Sheagren JN; Freter R J Infect Dis; 1985 Feb; 151(2):355-61. PubMed ID: 3968453 [TBL] [Abstract][Full Text] [Related]
13. Effect of erythromycin on microbial antagonisms: a study in gnotobiotic mice associated with a human fecal flora. Andremont A; Raibaud P; Tancrède C J Infect Dis; 1983 Sep; 148(3):579-87. PubMed ID: 6413596 [TBL] [Abstract][Full Text] [Related]
14. Relationship between levels of Clostridium difficile toxin A and toxin B and cecal lesions in gnotobiotic mice. Vernet A; Corthier G; Dubos-Ramaré F; Parodi AL Infect Immun; 1989 Jul; 57(7):2123-7. PubMed ID: 2499546 [TBL] [Abstract][Full Text] [Related]
15. Survival and implantation of Escherichia coli in the intestinal tract. Freter R; Brickner H; Fekete J; Vickerman MM; Carey KE Infect Immun; 1983 Feb; 39(2):686-703. PubMed ID: 6339389 [TBL] [Abstract][Full Text] [Related]
16. Short-chain fatty acids in intestinal content of germfree mice monocontaminated with Escherichia coli or Clostridium difficile. Høverstad T; Midtvedt T; Bøhmer T Scand J Gastroenterol; 1985 Apr; 20(3):373-80. PubMed ID: 3890142 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms that control bacterial populations in continuous-flow culture models of mouse large intestinal flora. Freter R; Brickner H; Botney M; Cleven D; Aranki A Infect Immun; 1983 Feb; 39(2):676-85. PubMed ID: 6339388 [TBL] [Abstract][Full Text] [Related]
18. [Evaluation of an experimental animal model allowing the study of the cecal microflora in the hamster, antagonistic to clostridium difficile]. Su WJ; Bourlioux P; Bournaud M; Besnier MO; Fourniat J Ann Inst Pasteur Microbiol (1985); 1986; 137A(1):89-96. PubMed ID: 3674782 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of translocation of viable Escherichia coli from the gastrointestinal tract of mice by bacterial antagonism. Berg RD; Owens WE Infect Immun; 1979 Sep; 25(3):820-27. PubMed ID: 159260 [TBL] [Abstract][Full Text] [Related]
20. Epidemiology of colitis induced by Clostridium difficile in hamsters: application of a bacteriophage and bacteriocin typing system. Hawkins CC; Buggy BP; Fekety R; Schaberg DR J Infect Dis; 1984 May; 149(5):775-80. PubMed ID: 6586860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]