BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35337801)

  • 1. Mitochondrial ATP synthase inhibitory factor 1 interacts with the p53-cyclophilin D complex and promotes opening of the permeability transition pore.
    Guo L
    J Biol Chem; 2022 May; 298(5):101858. PubMed ID: 35337801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclophilin D-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter.
    Parks RJ; Menazza S; Holmström KM; Amanakis G; Fergusson M; Ma H; Aponte AM; Bernardi P; Finkel T; Murphy E
    Cardiovasc Res; 2019 Feb; 115(2):385-394. PubMed ID: 30165576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclophilin D, Somehow a Master Regulator of Mitochondrial Function.
    Porter GA; Beutner G
    Biomolecules; 2018 Dec; 8(4):. PubMed ID: 30558250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptides Targeting the IF1-ATP Synthase Complex Modulate the Permeability Transition Pore in Cancer HeLa Cells.
    Grandi M; Fabbian S; Solaini G; Baracca A; Bellanda M; Giorgio V
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel insights into the mitochondrial permeability transition.
    Bonora M; Bravo-San Pedro JM; Kroemer G; Galluzzi L; Pinton P
    Cell Cycle; 2014; 13(17):2666-70. PubMed ID: 25486353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unique histidine in OSCP subunit of F-ATP synthase mediates inhibition of the permeability transition pore by acidic pH.
    Antoniel M; Jones K; Antonucci S; Spolaore B; Fogolari F; Petronilli V; Giorgio V; Carraro M; Di Lisa F; Forte M; Szabó I; Lippe G; Bernardi P
    EMBO Rep; 2018 Feb; 19(2):257-268. PubMed ID: 29217657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial permeability transition regulator, cyclophilin D, is transcriptionally activated by C/EBP during adipogenesis.
    Yu C; Sautchuk R; Martinez J; Eliseev RA
    J Biol Chem; 2023 Dec; 299(12):105458. PubMed ID: 37949231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of mitochondrial cyclophilin D, a downstream target of glycogen synthase kinase 3α, improves sperm motility.
    Park SH; Gye MC
    Reprod Biol Endocrinol; 2024 Jan; 22(1):15. PubMed ID: 38254112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux.
    De Marchi E; Bonora M; Giorgi C; Pinton P
    Cell Calcium; 2014 Jul; 56(1):1-13. PubMed ID: 24755650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis?
    Ying Y; Padanilam BJ
    Cell Mol Life Sci; 2016 Jun; 73(11-12):2309-24. PubMed ID: 27048819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclophilin D: An Integrator of Mitochondrial Function.
    Amanakis G; Murphy E
    Front Physiol; 2020; 11():595. PubMed ID: 32625108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F(1)F(O) ATP synthase.
    Jonas EA; Porter GA; Beutner G; Mnatsakanyan N; Alavian KN
    Pharmacol Res; 2015 Sep; 99():382-92. PubMed ID: 25956324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. F1F0 ATP Synthase-Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline.
    Yan S; Du F; Wu L; Zhang Z; Zhong C; Yu Q; Wang Y; Lue LF; Walker DG; Douglas JT; Yan SS
    Diabetes; 2016 Nov; 65(11):3482-3494. PubMed ID: 27554467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mitochondrial permeability transition pore and its adaptive responses in tumor cells.
    Rasola A; Bernardi P
    Cell Calcium; 2014 Dec; 56(6):437-45. PubMed ID: 25454774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the Mitochondrial Permeability Transition in Bone Metabolism and Aging.
    Sautchuk R; Yu C; McArthur M; Massie C; Brookes PS; Porter GA; Awad H; Eliseev RA
    J Bone Miner Res; 2023 Apr; 38(4):522-540. PubMed ID: 36779737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial Ca
    Hurst S; Hoek J; Sheu SS
    J Bioenerg Biomembr; 2017 Feb; 49(1):27-47. PubMed ID: 27497945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions.
    Bernardi P; Gerle C; Halestrap AP; Jonas EA; Karch J; Mnatsakanyan N; Pavlov E; Sheu SS; Soukas AA
    Cell Death Differ; 2023 Aug; 30(8):1869-1885. PubMed ID: 37460667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel cyclophilin D inhibitors derived from quinoxaline exhibit highly inhibitory activity against rat mitochondrial swelling and Ca2+ uptake/ release.
    Guo HX; Wang F; Yu KQ; Chen J; Bai DL; Chen KX; Shen X; Jiang HL
    Acta Pharmacol Sin; 2005 Oct; 26(10):1201-11. PubMed ID: 16174436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IF1 Promotes Cellular Proliferation and Inhibits Oxidative Phosphorylation in Mouse Embryonic Fibroblasts under Normoxia and Hypoxia.
    Lauterboeck L; Kang SW; White D; Bao R; Mobasheran P; Yang Q
    Cells; 2024 Mar; 13(6):. PubMed ID: 38534395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inhibitor protein IF
    Carroll J; Watt IN; Wright CJ; Ding S; Fearnley IM; Walker JE
    J Biol Chem; 2024 Mar; 300(3):105690. PubMed ID: 38280428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.