BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 35337802)

  • 1. Deciphering functional redundancy and energetics of malate oxidation in mycobacteria.
    Harold LK; Jinich A; Hards K; Cordeiro A; Keighley LM; Cross A; McNeil MB; Rhee K; Cook GM
    J Biol Chem; 2022 May; 298(5):101859. PubMed ID: 35337802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum.
    Molenaar D; van der Rest ME; Drysch A; Yücel R
    J Bacteriol; 2000 Dec; 182(24):6884-91. PubMed ID: 11092846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli.
    van der Rest ME; Frank C; Molenaar D
    J Bacteriol; 2000 Dec; 182(24):6892-9. PubMed ID: 11092847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Malate:quinone oxidoreductase is essential for growth on ethanol or acetate in Pseudomonas aeruginosa.
    Kretzschmar U; Rückert A; Jeoung JH; Görisch H
    Microbiology (Reading); 2002 Dec; 148(Pt 12):3839-3847. PubMed ID: 12480887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Another unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase.
    Kather B; Stingl K; van der Rest ME; Altendorf K; Molenaar D
    J Bacteriol; 2000 Jun; 182(11):3204-9. PubMed ID: 10809701
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Ito T; Kajita S; Fujii M; Shinohara Y
    Microbiol Spectr; 2023 Jun; 11(3):e0016823. PubMed ID: 37036365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum.
    Molenaar D; van der Rest ME; Petrović S
    Eur J Biochem; 1998 Jun; 254(2):395-403. PubMed ID: 9660197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of experimental cerebral malaria by disruption of malate:quinone oxidoreductase.
    Niikura M; Komatsuya K; Inoue SI; Matsuda R; Asahi H; Inaoka DK; Kita K; Kobayashi F
    Malar J; 2017 Jun; 16(1):247. PubMed ID: 28606087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malate:quinone oxidoreductase knockout makes Mycobacterium tuberculosis susceptible to stress and affects its in vivo survival.
    Kumar R; Sharma P; Chauhan A; Singh N; Prajapati VM; Singh SK
    Microbes Infect; 2024; 26(1-2):105215. PubMed ID: 37689346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Malate dehydrogenase activity in the reductive arm of the incomplete citric acid cycle of Nitrosomonas europaea.
    Deutch CE
    Antonie Van Leeuwenhoek; 2013 Nov; 104(5):645-55. PubMed ID: 23881243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylotrophy in Mycobacteria: Dissection of the Methanol Metabolism Pathway in Mycobacterium smegmatis.
    Dubey AA; Wani SR; Jain V
    J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29891642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization and identification of ferulenol and embelin as potent inhibitors of malate:quinone oxidoreductase from
    Kabongo AT; Acharjee R; Sakura T; Bundutidi GM; Hartuti ED; Davies C; Gundogdu O; Kita K; Shiba T; Inaoka DK
    Front Mol Biosci; 2023; 10():1095026. PubMed ID: 36776743
    [No Abstract]   [Full Text] [Related]  

  • 13. An alpha-proteobacterial type malate dehydrogenase may complement LDH function in Plasmodium falciparum. Cloning and biochemical characterization of the enzyme.
    Tripathi AK; Desai PV; Pradhan A; Khan SI; Avery MA; Walker LA; Tekwani BL
    Eur J Biochem; 2004 Sep; 271(17):3488-502. PubMed ID: 15317584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical analysis of the NAD+-dependent malate dehydrogenase, a substrate of several serine/threonine protein kinases of Mycobacterium tuberculosis.
    Wang XM; Soetaert K; Peirs P; Kalai M; Fontaine V; Dehaye JP; Lefèvre P
    PLoS One; 2015; 10(4):e0123327. PubMed ID: 25860441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic changes accompanying the loss of fumarate hydratase and malate-quinone oxidoreductase in the asexual blood stage of Plasmodium falciparum.
    Rajaram K; Tewari SG; Wallqvist A; Prigge ST
    J Biol Chem; 2022 May; 298(5):101897. PubMed ID: 35398098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability.
    Park SJ; Cotter PA; Gunsalus RP
    J Bacteriol; 1995 Nov; 177(22):6652-6. PubMed ID: 7592446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145.
    Takahashi-Íñiguez T; Barrios-Hernández J; Rodríguez-Maldonado M; Flores ME
    Arch Microbiol; 2018 Nov; 200(9):1279-1286. PubMed ID: 29936645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and Characterization of a Malate:Quinone Oxidoreductase from
    Oh YR; Jang YA; Hong SH; Eom GT
    J Agric Food Chem; 2020 Nov; 68(47):13770-13778. PubMed ID: 33166455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of malate dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum.
    Yennaco LJ; Hu Y; Holden JF
    Extremophiles; 2007 Sep; 11(5):741-6. PubMed ID: 17487443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the Mechanism of Catalytic Activity of
    Ito T; Tojo Y; Fujii M; Nishino K; Kosako H; Shinohara Y
    ACS Omega; 2024 May; 9(19):21647-21657. PubMed ID: 38764661
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.