BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35337802)

  • 21. Essentiality of succinate dehydrogenase in Mycobacterium smegmatis and its role in the generation of the membrane potential under hypoxia.
    Pecsi I; Hards K; Ekanayaka N; Berney M; Hartman T; Jacobs WR; Cook GM
    mBio; 2014 Aug; 5(4):. PubMed ID: 25118234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target.
    Hartuti ED; Inaoka DK; Komatsuya K; Miyazaki Y; Miller RJ; Xinying W; Sadikin M; Prabandari EE; Waluyo D; Kuroda M; Amalia E; Matsuo Y; Nugroho NB; Saimoto H; Pramisandi A; Watanabe YI; Mori M; Shiomi K; Balogun EO; Shiba T; Harada S; Nozaki T; Kita K
    Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):191-200. PubMed ID: 29269266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical Studies of Mitochondrial Malate: Quinone Oxidoreductase from
    Acharjee R; Talaam KK; Hartuti ED; Matsuo Y; Sakura T; Gloria BM; Hidano S; Kido Y; Mori M; Shiomi K; Sekijima M; Nozaki T; Umeda K; Nishikawa Y; Hamano S; Kita K; Inaoka DK
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360597
    [No Abstract]   [Full Text] [Related]  

  • 24. Variations in the pathways of malate oxidation and phosphorylation in different species of Mycobacteria.
    Prasada Reddy TL; Suryanarayana Murthy P; Venkitasubramanian TA
    Biochim Biophys Acta; 1975 Feb; 376(2):210-8. PubMed ID: 234747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The malate dehydrogenase of Ralstonia eutropha and functionality of the C(3)/C(4) metabolism in a Tn5-induced mdh mutant.
    Brämer CO; Steinbüchel A
    FEMS Microbiol Lett; 2002 Jul; 212(2):159-64. PubMed ID: 12113928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relevance of NADH Dehydrogenase and Alternative Two-Enzyme Systems for Growth of
    Maeda T; Koch-Koerfges A; Bott M
    Front Bioeng Biotechnol; 2020; 8():621213. PubMed ID: 33585420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conformational changes on substrate binding revealed by structures of Methylobacterium extorquens malate dehydrogenase.
    González JM; Marti-Arbona R; Chen JCH; Broom-Peltz B; Unkefer CJ
    Acta Crystallogr F Struct Biol Commun; 2018 Oct; 74(Pt 10):610-616. PubMed ID: 30279311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insertion of transposon Tn5tac1 in the Sinorhizobium meliloti malate dehydrogenase (mdh) gene results in conditional polar effects on downstream TCA cycle genes.
    Dymov SI; Meek DJ; Steven B; Driscoll BT
    Mol Plant Microbe Interact; 2004 Dec; 17(12):1318-27. PubMed ID: 15597737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic studies on mycobacteria-I. Demonstration of key enzymes of glycolysis and tricarboxylic acid cycle on polyacrylamide gels.
    Sharma VD; Katoch VM; Datta AK; Kannan KB; Shivannavar CT; Bharadwaj VP
    Indian J Lepr; 1985; 57(3):534-41. PubMed ID: 3831090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and properties of two malate dehydrogenases from Candida sp. N-16 grown on methanol.
    Yoshikawa J; Seki K; Shinoyama H; Fujii T
    Biosci Biotechnol Biochem; 2001 Jul; 65(7):1659-62. PubMed ID: 11515554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of glyoxysomal malate dehydrogenase (MDH3) from Saccharomyces cerevisiae.
    Moriyama S; Nishio K; Mizushima T
    Acta Crystallogr F Struct Biol Commun; 2018 Oct; 74(Pt 10):617-624. PubMed ID: 30279312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Malic Enzyme, not Malate Dehydrogenase, Mainly Oxidizes Malate That Originates from the Tricarboxylic Acid Cycle in Cyanobacteria.
    Katayama N; Iwazumi K; Suzuki H; Osanai T; Ito S
    mBio; 2022 Dec; 13(6):e0218722. PubMed ID: 36314837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-consecutive enzyme interactions within TCA cycle supramolecular assembly regulate carbon-nitrogen metabolism.
    Jasinska W; Dindo M; Cordoba SMC; Serohijos AWR; Laurino P; Brotman Y; Bershtein S
    Nat Commun; 2024 Jun; 15(1):5285. PubMed ID: 38902266
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites.
    Bartholomae M; Meyer FM; Commichau FM; Burkovski A; Hillen W; Seidel G
    FEBS J; 2014 Feb; 281(4):1132-43. PubMed ID: 24325460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. d-2-Hydroxyglutarate dehydrogenase plays a dual role in l-serine biosynthesis and d-malate utilization in the bacterium
    Guo X; Zhang M; Cao M; Zhang W; Kang Z; Xu P; Ma C; Gao C
    J Biol Chem; 2018 Oct; 293(40):15513-15523. PubMed ID: 30131334
    [No Abstract]   [Full Text] [Related]  

  • 36. Two for the price of one: Attacking the energetic-metabolic hub of mycobacteria to produce new chemotherapeutic agents.
    Hards K; Adolph C; Harold LK; McNeil MB; Cheung CY; Jinich A; Rhee KY; Cook GM
    Prog Biophys Mol Biol; 2020 May; 152():35-44. PubMed ID: 31733221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High extracellular levels of Mycobacterium tuberculosis glutamine synthetase and superoxide dismutase in actively growing cultures are due to high expression and extracellular stability rather than to a protein-specific export mechanism.
    Tullius MV; Harth G; Horwitz MA
    Infect Immun; 2001 Oct; 69(10):6348-63. PubMed ID: 11553579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the Mycoplasma bovis lactate dehydrogenase reveals typical enzymatic activity despite the presence of an atypical catalytic site motif.
    Masukagami Y; Tivendale KA; Browning GF; Sansom FM
    Microbiology (Reading); 2018 Feb; 164(2):186-193. PubMed ID: 29393016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NADP-malate dehydrogenase from Chlamydomonas: prediction of new structural determinants for redox regulation by homology modelling.
    Gómez Ia; Merchán F; Fernández E; Quesada A
    Plant Mol Biol; 2002 Feb; 48(3):211-21. PubMed ID: 11855723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reducing substrate inhibition of malate dehydrogenase from Geobacillus stearothermophilus by C-terminal truncation.
    Shimozawa Y; Matsuhisa H; Nakamura T; Himiyama T; Nishiya Y
    Protein Eng Des Sel; 2022 Feb; 35():. PubMed ID: 36208218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.