BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 35337845)

  • 1. Following the tracks: How transcription factor binding dynamics control transcription.
    de Jonge WJ; Patel HP; Meeussen JVW; Lenstra TL
    Biophys J; 2022 May; 121(9):1583-1592. PubMed ID: 35337845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule tracking of transcription protein dynamics in living cells: seeing is believing, but what are we seeing?
    Lionnet T; Wu C
    Curr Opin Genet Dev; 2021 Apr; 67():94-102. PubMed ID: 33422933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Analysis Reveals Linked Cycles of RSC Chromatin Remodeling and Ace1p Transcription Factor Binding in Yeast.
    Mehta GD; Ball DA; Eriksson PR; Chereji RV; Clark DJ; McNally JG; Karpova TS
    Mol Cell; 2018 Dec; 72(5):875-887.e9. PubMed ID: 30318444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic transcription regulation at the single-molecule level.
    Wang Z; Deng W
    Dev Biol; 2022 Feb; 482():67-81. PubMed ID: 34896367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power-law behavior of transcription factor dynamics at the single-molecule level implies a continuum affinity model.
    Garcia DA; Fettweis G; Presman DM; Paakinaho V; Jarzynski C; Upadhyaya A; Hager GL
    Nucleic Acids Res; 2021 Jul; 49(12):6605-6620. PubMed ID: 33592625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single molecule microscopy to profile the effect of zinc status on transcription factor dynamics.
    Damon LJ; Aaron J; Palmer AE
    Sci Rep; 2022 Oct; 12(1):17789. PubMed ID: 36273101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule tracking (SMT) and localization of SRF and MRTF transcription factors during neuronal stimulation and differentiation.
    Kuchler O; Gerlach J; Vomhof T; Hettich J; Steinmetz J; Gebhardt JCM; Michaelis J; Knöll B
    Open Biol; 2022 May; 12(5):210383. PubMed ID: 35537478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription factor exchange enables prolonged transcriptional bursts.
    Pomp W; Meeussen JVW; Lenstra TL
    Mol Cell; 2024 Mar; 84(6):1036-1048.e9. PubMed ID: 38377994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying transcription factor kinetics: at work or at play?
    Mueller F; Stasevich TJ; Mazza D; McNally JG
    Crit Rev Biochem Mol Biol; 2013; 48(5):492-514. PubMed ID: 24025032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes.
    Afek A; Cohen H; Barber-Zucker S; Gordân R; Lukatsky DB
    PLoS Comput Biol; 2015 Aug; 11(8):e1004429. PubMed ID: 26285121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of transcription factor selectivity.
    Pan Y; Tsai CJ; Ma B; Nussinov R
    Trends Genet; 2010 Feb; 26(2):75-83. PubMed ID: 20074831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing transcription factor dynamics in living cells.
    Liu Z; Tjian R
    J Cell Biol; 2018 Apr; 217(4):1181-1191. PubMed ID: 29378780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription factor dynamics in plants: Insights and technologies for in vivo imaging.
    Zhang Y; Lu Y; El Sayyed H; Bian J; Lin J; Li X
    Plant Physiol; 2022 May; 189(1):23-36. PubMed ID: 35134239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COUP-TF upregulates NGFI-A gene expression through an Sp1 binding site.
    Pipaón C; Tsai SY; Tsai MJ
    Mol Cell Biol; 1999 Apr; 19(4):2734-45. PubMed ID: 10082539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.
    Kazemian M; Pham H; Wolfe SA; Brodsky MH; Sinha S
    Nucleic Acids Res; 2013 Sep; 41(17):8237-52. PubMed ID: 23847101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA residence time is a regulatory factor of transcription repression.
    Clauß K; Popp AP; Schulze L; Hettich J; Reisser M; Escoter Torres L; Uhlenhaut NH; Gebhardt JCM
    Nucleic Acids Res; 2017 Nov; 45(19):11121-11130. PubMed ID: 28977492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SMTracker: a tool for quantitative analysis, exploration and visualization of single-molecule tracking data reveals highly dynamic binding of B. subtilis global repressor AbrB throughout the genome.
    Rösch TC; Oviedo-Bocanegra LM; Fritz G; Graumann PL
    Sci Rep; 2018 Oct; 8(1):15747. PubMed ID: 30356068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution DNA-binding specificity analysis of yeast transcription factors.
    Zhu C; Byers KJ; McCord RP; Shi Z; Berger MF; Newburger DE; Saulrieta K; Smith Z; Shah MV; Radhakrishnan M; Philippakis AA; Hu Y; De Masi F; Pacek M; Rolfs A; Murthy T; Labaer J; Bulyk ML
    Genome Res; 2009 Apr; 19(4):556-66. PubMed ID: 19158363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speed-Specificity Trade-Offs in the Transcription Factors Search for Their Genomic Binding Sites.
    Jana T; Brodsky S; Barkai N
    Trends Genet; 2021 May; 37(5):421-432. PubMed ID: 33414013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.