These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35337878)

  • 21. Groundwater Monitoring Using GRACE and GLDAS Data after Downscaling Within Basaltic Aquifer System.
    Verma K; Katpatal YB
    Ground Water; 2020 Jan; 58(1):143-151. PubMed ID: 31359409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated Hydrologic Modeling to Untangle the Impacts of Water Management During Drought.
    Thatch LM; Gilbert JM; Maxwell RM
    Ground Water; 2020 May; 58(3):377-391. PubMed ID: 32129878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using GRACE to Detect Groundwater Variation in North China Plain after South-North Water Diversion.
    Xiong J; Yin J; Guo S; Yin W; Rao W; Chao N; Abhishek
    Ground Water; 2023; 61(3):402-420. PubMed ID: 36098234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The analysis on groundwater storage variations from GRACE/GRACE-FO in recent 20 years driven by influencing factors and prediction in Shandong Province, China.
    Li W; Bao L; Yao G; Wang F; Guo Q; Zhu J; Zhu J; Wang Z; Bi J; Zhu C; Zhong Y; Lu S
    Sci Rep; 2024 Mar; 14(1):5819. PubMed ID: 38461310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry.
    Chen J; Cazenave A; Dahle C; Llovel W; Panet I; Pfeffer J; Moreira L
    Surv Geophys; 2022; 43(1):305-345. PubMed ID: 35535258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reconstruction of GRACE Mass Change Time Series Using a Bayesian Framework.
    Rateb A; Sun A; Scanlon BR; Save H; Hasan E
    Earth Space Sci; 2022 Jul; 9(7):e2021EA002162. PubMed ID: 36032558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Groundwater Loss and Aquifer System Compaction in San Joaquin Valley During 2012-2015 Drought.
    Ojha C; Werth S; Shirzaei M
    J Geophys Res Solid Earth; 2019 Mar; 124(3):3127-3143. PubMed ID: 31218156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial and temporal downscaling schemes to reconstruct high-resolution GRACE data: A case study in the Tarim River Basin, Northwest China.
    Xue D; Gui D; Ci M; Liu Q; Wei G; Liu Y
    Sci Total Environ; 2024 Jan; 907():167908. PubMed ID: 37866613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping terrestrial water storage changes in Canada using GRACE and GRACE-FO.
    Fatolazadeh F; Goïta K
    Sci Total Environ; 2021 Jul; 779():146435. PubMed ID: 34030259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring the spatiotemporal terrestrial water storage changes in the Yarlung Zangbo River Basin by applying the P-LSA and EOF methods to GRACE data.
    Zhang H; Zhang LL; Li J; An RD; Deng Y
    Sci Total Environ; 2020 Apr; 713():136274. PubMed ID: 32019005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing spatial resolution of GRACE-derived groundwater storage anomalies in Urmia catchment using machine learning downscaling methods.
    Sabzehee F; Amiri-Simkooei AR; Iran-Pour S; Vishwakarma BD; Kerachian R
    J Environ Manage; 2023 Mar; 330():117180. PubMed ID: 36603260
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstructing GRACE-type time-variable gravity from the Swarm satellites.
    Richter HMP; Lück C; Klos A; Sideris MG; Rangelova E; Kusche J
    Sci Rep; 2021 Jan; 11(1):1117. PubMed ID: 33441938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drought characterization over Indian sub-continent using GRACE-based indices.
    Rawat S; Ganapathy A; Agarwal A
    Sci Rep; 2022 Sep; 12(1):15432. PubMed ID: 36104454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India.
    Satish Kumar K; Venkata Rathnam E; Sridhar V
    Sci Total Environ; 2021 Apr; 763():142994. PubMed ID: 33129527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of extreme hydrological droughts in the poyang lake basin during 2021-2022 using GNSS-derived daily terrestrial water storage anomalies.
    Peng Y; Chen G; Chao N; Wang Z; Wu T; Luo X
    Sci Total Environ; 2024 Apr; 919():170875. PubMed ID: 38360307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconstructing a long-term water storage-based drought index in the Yangtze River Basin.
    Zhong Y; Hu E; Wu Y; An Q; Wang C; Bai H; Gao W
    Sci Total Environ; 2023 Jul; 883():163403. PubMed ID: 37059147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristic mega-basin water storage behavior using GRACE.
    Reager JT; Famiglietti JS
    Water Resour Res; 2013 Jun; 49(6):3314-3329. PubMed ID: 24563556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring groundwater and soil water storage changes across the CONUS at 12.5 km resolution by a Bayesian integration of GRACE data into W3RA.
    Mehrnegar N; Jones O; Singer MB; Schumacher M; Jagdhuber T; Scanlon BR; Rateb A; Forootan E
    Sci Total Environ; 2021 Mar; 758():143579. PubMed ID: 33257057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The 2019-2020 Rise in Lake Victoria Monitored from Space: Exploiting the State-of-the-Art GRACE-FO and the Newly Released ERA-5 Reanalysis Products.
    Khaki M; Awange J
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34201871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Response of vegetation to terrestrial water storage in Southwest China].
    Wang XY; Wei DF; Kuang HH
    Ying Yong Sheng Tai Xue Bao; 2023 Oct; 34(10):2723-2729. PubMed ID: 37897279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.