BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 35337939)

  • 1. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.
    Ikeda-Imafuku M; Wang LL; Rodrigues D; Shaha S; Zhao Z; Mitragotri S
    J Control Release; 2022 May; 345():512-536. PubMed ID: 35337939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors.
    Kim J; Cho H; Lim DK; Joo MK; Kim K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right.
    Sun D; Zhou S; Gao W
    ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation.
    Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D
    Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Passive Targeting to Personalized Nanomedicine: Multidimensional Insights on Nanoparticles' Interaction with the Tumor Microenvironment.
    Sebak AA; El-Shenawy BM; El-Safy S; El-Shazly M
    Curr Pharm Biotechnol; 2021; 22(11):1444-1465. PubMed ID: 33308126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment.
    Park J; Choi Y; Chang H; Um W; Ryu JH; Kwon IC
    Theranostics; 2019; 9(26):8073-8090. PubMed ID: 31754382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.
    Greish K
    J Drug Target; 2007; 15(7-8):457-64. PubMed ID: 17671892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting endothelial permeability in the EPR effect.
    Lahooti B; Akwii RG; Zahra FT; Sajib MS; Lamprou M; Alobaida A; Lionakis MS; Mattheolabakis G; Mikelis CM
    J Control Release; 2023 Sep; 361():212-235. PubMed ID: 37517543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy.
    Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y
    Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms.
    Zi Y; Yang K; He J; Wu Z; Liu J; Zhang W
    Adv Drug Deliv Rev; 2022 Sep; 188():114449. PubMed ID: 35835353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.
    Shi Y; van der Meel R; Chen X; Lammers T
    Theranostics; 2020; 10(17):7921-7924. PubMed ID: 32685029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor targeting via EPR: Strategies to enhance patient responses.
    Golombek SK; May JN; Theek B; Appold L; Drude N; Kiessling F; Lammers T
    Adv Drug Deliv Rev; 2018 May; 130():17-38. PubMed ID: 30009886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human solid tumors and clinical relevance of the enhanced permeation and retention effect: a 'golden gate' for nanomedicine in preclinical studies?
    Gawali P; Saraswat A; Bhide S; Gupta S; Patel K
    Nanomedicine (Lond); 2023 Jan; 18(2):169-190. PubMed ID: 37042320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors.
    Ojha T; Pathak V; Shi Y; Hennink WE; Moonen CTW; Storm G; Kiessling F; Lammers T
    Adv Drug Deliv Rev; 2017 Sep; 119():44-60. PubMed ID: 28697952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications.
    Duan L; Yang L; Jin J; Yang F; Liu D; Hu K; Wang Q; Yue Y; Gu N
    Theranostics; 2020; 10(2):462-483. PubMed ID: 31903132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum-based combination nanomedicines for cancer therapy.
    Li Y; Lin W
    Curr Opin Chem Biol; 2023 Jun; 74():102290. PubMed ID: 36989943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The development of novel tumor targeting delivery strategy].
    Gao HL; Jiang XG
    Yao Xue Xue Bao; 2016 Feb; 51(2):272-80. PubMed ID: 29856581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcytosis-enabled active extravasation of tumor nanomedicine.
    Zhou Q; Li J; Xiang J; Shao S; Zhou Z; Tang J; Shen Y
    Adv Drug Deliv Rev; 2022 Oct; 189():114480. PubMed ID: 35952830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors.
    Islam R; Maeda H; Fang J
    Expert Opin Drug Deliv; 2022 Feb; 19(2):199-212. PubMed ID: 33430661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.