These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 35337965)
1. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising. Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965 [TBL] [Abstract][Full Text] [Related]
2. A Unified Multi-Modality Fusion Framework for Deep Spatio-Temporal-Spectral Feature Learning in Resting-State fMRI Denoising. Lim M; Heo KS; Kim JM; Kang B; Lin W; Zhang H; Shen D; Kam TE IEEE J Biomed Health Inform; 2024 Jan; PP():. PubMed ID: 38241107 [TBL] [Abstract][Full Text] [Related]
3. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422 [TBL] [Abstract][Full Text] [Related]
4. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination. Shirer WR; Jiang H; Price CM; Ng B; Greicius MD Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368 [TBL] [Abstract][Full Text] [Related]
5. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification. Zerbi V; Grandjean J; Rudin M; Wenderoth N Neuroimage; 2015 Dec; 123():11-21. PubMed ID: 26296501 [TBL] [Abstract][Full Text] [Related]
6. Automatic independent component labeling for artifact removal in fMRI. Tohka J; Foerde K; Aron AR; Tom SM; Toga AW; Poldrack RA Neuroimage; 2008 Feb; 39(3):1227-45. PubMed ID: 18042495 [TBL] [Abstract][Full Text] [Related]
7. Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion. Xu Y; Tong Y; Liu S; Chow HM; AbdulSabur NY; Mattay GS; Braun AR Neuroimage; 2014 Dec; 103():33-47. PubMed ID: 25225001 [TBL] [Abstract][Full Text] [Related]
8. Volume Reduction Techniques for the Classification of Independent Components of rs-fMRI Data: a Study with Convolutional Neural Networks. Mera Jiménez L; Ochoa Gómez JF Neuroinformatics; 2022 Jan; 20(1):73-90. PubMed ID: 33829386 [TBL] [Abstract][Full Text] [Related]
9. A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data. Azevedo T; Campbell A; Romero-Garcia R; Passamonti L; Bethlehem RAI; Liò P; Toschi N Med Image Anal; 2022 Jul; 79():102471. PubMed ID: 35580429 [TBL] [Abstract][Full Text] [Related]
10. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations. Vu H; Kim HC; Jung M; Lee JH Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633 [TBL] [Abstract][Full Text] [Related]
11. Automatic classification and removal of structured physiological noise for resting state functional connectivity MRI analysis. Lee K; Khoo HM; Fourcade C; Gotman J; Grova C Magn Reson Imaging; 2019 May; 58():97-107. PubMed ID: 30695721 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning Evidence for Sex Differences Consistently Influences Resting-State Functional Magnetic Resonance Imaging Fluctuations Across Multiple Independently Acquired Data Sets. Al Zoubi O; Misaki M; Tsuchiyagaito A; Zotev V; White E; Paulus M; Bodurka J Brain Connect; 2022 May; 12(4):348-361. PubMed ID: 34269609 [No Abstract] [Full Text] [Related]
14. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease. Jie B; Liu M; Shen D Med Image Anal; 2018 Jul; 47():81-94. PubMed ID: 29702414 [TBL] [Abstract][Full Text] [Related]