BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 35337965)

  • 1. Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising.
    Heo KS; Shin DH; Hung SC; Lin W; Zhang H; Shen D; Kam TE
    Neuroimage; 2022 Jul; 254():119127. PubMed ID: 35337965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Unified Multi-Modality Fusion Framework for Deep Spatio-Temporal-Spectral Feature Learning in Resting-State fMRI Denoising.
    Lim M; Heo KS; Kim JM; Kang B; Lin W; Zhang H; Shen D; Kam TE
    IEEE J Biomed Health Inform; 2024 Jan; PP():. PubMed ID: 38241107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers.
    Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM
    Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of rs-fMRI Pre-processing for Enhanced Signal-Noise Separation, Test-Retest Reliability, and Group Discrimination.
    Shirer WR; Jiang H; Price CM; Ng B; Greicius MD
    Neuroimage; 2015 Aug; 117():67-79. PubMed ID: 25987368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification.
    Zerbi V; Grandjean J; Rudin M; Wenderoth N
    Neuroimage; 2015 Dec; 123():11-21. PubMed ID: 26296501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic independent component labeling for artifact removal in fMRI.
    Tohka J; Foerde K; Aron AR; Tom SM; Toga AW; Poldrack RA
    Neuroimage; 2008 Feb; 39(3):1227-45. PubMed ID: 18042495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion.
    Xu Y; Tong Y; Liu S; Chow HM; AbdulSabur NY; Mattay GS; Braun AR
    Neuroimage; 2014 Dec; 103():33-47. PubMed ID: 25225001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume Reduction Techniques for the Classification of Independent Components of rs-fMRI Data: a Study with Convolutional Neural Networks.
    Mera Jiménez L; Ochoa Gómez JF
    Neuroinformatics; 2022 Jan; 20(1):73-90. PubMed ID: 33829386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data.
    Azevedo T; Campbell A; Romero-Garcia R; Passamonti L; Bethlehem RAI; Liò P; Toschi N
    Med Image Anal; 2022 Jul; 79():102471. PubMed ID: 35580429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning Evidence for Sex Differences Consistently Influences Resting-State Functional Magnetic Resonance Imaging Fluctuations Across Multiple Independently Acquired Data Sets.
    Al Zoubi O; Misaki M; Tsuchiyagaito A; Zotev V; White E; Paulus M; Bodurka J
    Brain Connect; 2022 May; 12(4):348-361. PubMed ID: 34269609
    [No Abstract]   [Full Text] [Related]  

  • 12. Automatic classification and removal of structured physiological noise for resting state functional connectivity MRI analysis.
    Lee K; Khoo HM; Fourcade C; Gotman J; Grova C
    Magn Reson Imaging; 2019 May; 58():97-107. PubMed ID: 30695721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated multi-echo denoising strategy improves identification of inherent language laterality.
    Amemiya S; Yamashita H; Takao H; Abe O
    Magn Reson Med; 2019 May; 81(5):3262-3271. PubMed ID: 30561807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease.
    Jie B; Liu M; Shen D
    Med Image Anal; 2018 Jul; 47():81-94. PubMed ID: 29702414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular preprocessing pipelines can reintroduce artifacts into fMRI data.
    Lindquist MA; Geuter S; Wager TD; Caffo BS
    Hum Brain Mapp; 2019 Jun; 40(8):2358-2376. PubMed ID: 30666750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data.
    Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity.
    Kassinopoulos M; Mitsis GD
    Magn Reson Imaging; 2022 Jan; 85():228-250. PubMed ID: 34715292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the efficacy of multi-echo ICA denoising on model-based fMRI.
    Steel A; Garcia BD; Silson EH; Robertson CE
    Neuroimage; 2022 Dec; 264():119723. PubMed ID: 36328274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filtering respiratory motion artifact from resting state fMRI data in infant and toddler populations.
    Kaplan S; Meyer D; Miranda-Dominguez O; Perrone A; Earl E; Alexopoulos D; Barch DM; Day TKM; Dust J; Eggebrecht AT; Feczko E; Kardan O; Kenley JK; Rogers CE; Wheelock MD; Yacoub E; Rosenberg M; Elison JT; Fair DA; Smyser CD
    Neuroimage; 2022 Feb; 247():118838. PubMed ID: 34942363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble learning with 3D convolutional neural networks for functional connectome-based prediction.
    Khosla M; Jamison K; Kuceyeski A; Sabuncu MR
    Neuroimage; 2019 Oct; 199():651-662. PubMed ID: 31220576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.