These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35338232)

  • 1. PowerBacGWAS: a computational pipeline to perform power calculations for bacterial genome-wide association studies.
    Coll F; Gouliouris T; Bruchmann S; Phelan J; Raven KE; Clark TG; Parkhill J; Peacock SJ
    Commun Biol; 2022 Mar; 5(1):266. PubMed ID: 35338232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking bacterial genome-wide association study methods using simulated genomes and phenotypes.
    Saber MM; Shapiro BJ
    Microb Genom; 2020 Mar; 6(3):. PubMed ID: 32100713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation study investigating power estimates in phenome-wide association studies.
    Verma A; Bradford Y; Dudek S; Lucas AM; Verma SS; Pendergrass SA; Ritchie MD
    BMC Bioinformatics; 2018 Apr; 19(1):120. PubMed ID: 29618318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The statistical power of genome-wide association studies for threshold traits with different frequencies of causal variants.
    Khanzadeh H; Ghavi Hossein-Zadeh N; Ghovvati S
    Genetica; 2022 Feb; 150(1):51-57. PubMed ID: 34705138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?
    Veturi Y; Ritchie MD
    Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Powerful and efficient SNP-set association tests across multiple phenotypes using GWAS summary data.
    Guo B; Wu B
    Bioinformatics; 2019 Apr; 35(8):1366-1372. PubMed ID: 30239606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G2P: a Genome-Wide-Association-Study simulation tool for genotype simulation, phenotype simulation and power evaluation.
    Tang Y; Liu X
    Bioinformatics; 2019 Oct; 35(19):3852-3854. PubMed ID: 30848784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A benchmark study on current GWAS models in admixed populations.
    Yang Z; Cieza B; Reyes-Dumeyer D; Montesinos R; Soto-Añari M; Custodio N; Tosto G
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38037235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of missing variants by combining multiple analytic pipelines.
    Ren Y; Reddy JS; Pottier C; Sarangi V; Tian S; Sinnwell JP; McDonnell SK; Biernacka JM; Carrasquillo MM; Ross OA; Ertekin-Taner N; Rademakers R; Hudson M; Mainzer LS; Asmann YW
    BMC Bioinformatics; 2018 Apr; 19(1):139. PubMed ID: 29661148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data.
    Masotti M; Guo B; Wu B
    Biometrics; 2019 Dec; 75(4):1076-1085. PubMed ID: 31021400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of improved microarray coverage and larger sample sizes on future genome-wide association studies.
    Lindquist KJ; Jorgenson E; Hoffmann TJ; Witte JS
    Genet Epidemiol; 2013 May; 37(4):383-92. PubMed ID: 23529720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Alternative Definitions of Controls to Increase Statistical Power in GWAS.
    Benstock SE; Weaver K; Hettema JM; Verhulst B
    Behav Genet; 2024 Jul; 54(4):353-366. PubMed ID: 38869698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design considerations for genetic linkage and association studies.
    Nsengimana J; Bishop DT
    Methods Mol Biol; 2012; 850():237-62. PubMed ID: 22307702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-ranking sequencing variants in the post-GWAS era for accurate causal variant identification.
    Faye LL; Machiela MJ; Kraft P; Bull SB; Sun L
    PLoS Genet; 2013; 9(8):e1003609. PubMed ID: 23950724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging Northern European population history: novel low-frequency variants for polycystic ovary syndrome.
    Tyrmi JS; Arffman RK; Pujol-Gualdo N; Kurra V; Morin-Papunen L; Sliz E; ; Piltonen TT; Laisk T; Kettunen J; Laivuori H
    Hum Reprod; 2022 Jan; 37(2):352-365. PubMed ID: 34791234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights from genome-wide approaches to identify variants associated to phenotypes at pan-genome scale: Application to L. monocytogenes' ability to grow in cold conditions.
    Fritsch L; Felten A; Palma F; Mariet JF; Radomski N; Mistou MY; Augustin JC; Guillier L
    Int J Food Microbiol; 2019 Feb; 291():181-188. PubMed ID: 30530095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data.
    Wu Y; Zheng Z; Visscher PM; Yang J
    Genome Biol; 2017 May; 18(1):86. PubMed ID: 28506277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The advent of genome-wide association studies for bacteria.
    Chen PE; Shapiro BJ
    Curr Opin Microbiol; 2015 Jun; 25():17-24. PubMed ID: 25835153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing Genome-Wide Association Study Results from Different Measurements of an Underlying Phenotype.
    Gage JL; de Leon N; Clayton MK
    G3 (Bethesda); 2018 Nov; 8(11):3715-3722. PubMed ID: 30262522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.