These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35338232)

  • 21. The advent of genome-wide association studies for bacteria.
    Chen PE; Shapiro BJ
    Curr Opin Microbiol; 2015 Jun; 25():17-24. PubMed ID: 25835153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing Genome-Wide Association Study Results from Different Measurements of an Underlying Phenotype.
    Gage JL; de Leon N; Clayton MK
    G3 (Bethesda); 2018 Nov; 8(11):3715-3722. PubMed ID: 30262522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. phenosim--A software to simulate phenotypes for testing in genome-wide association studies.
    Günther T; Gawenda I; Schmid KJ
    BMC Bioinformatics; 2011 Jun; 12():265. PubMed ID: 21714868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved Prediction of Bacterial Genotype-Phenotype Associations Using Interpretable Pangenome-Spanning Regressions.
    Lees JA; Mai TT; Galardini M; Wheeler NE; Horsfield ST; Parkhill J; Corander J
    mBio; 2020 Jul; 11(4):. PubMed ID: 32636251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-stage extreme phenotype sequencing design for discovering and testing common and rare genetic variants: efficiency and power.
    Kang G; Lin D; Hakonarson H; Chen J
    Hum Hered; 2012; 73(3):139-47. PubMed ID: 22678112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel.
    Yang J; Jiang H; Yeh CT; Yu J; Jeddeloh JA; Nettleton D; Schnable PS
    Plant J; 2015 Nov; 84(3):587-96. PubMed ID: 26386250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A gene based combination test using GWAS summary data.
    Zhang J; Liang X; Gonzales S; Liu J; Gao XR; Wang X
    BMC Bioinformatics; 2023 Jan; 24(1):2. PubMed ID: 36597047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. USAT: A Unified Score-Based Association Test for Multiple Phenotype-Genotype Analysis.
    Ray D; Pankow JS; Basu S
    Genet Epidemiol; 2016 Jan; 40(1):20-34. PubMed ID: 26638693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leveraging family history in genetic association analyses of binary traits.
    Zhang Y; Meigs JB; Liu CT; Dupuis J; Sarnowski C
    BMC Genomics; 2022 Oct; 23(1):678. PubMed ID: 36182916
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequencing and imputation in GWAS: Cost-effective strategies to increase power and genomic coverage across diverse populations.
    Quick C; Anugu P; Musani S; Weiss ST; Burchard EG; White MJ; Keys KL; Cucca F; Sidore C; Boehnke M; Fuchsberger C
    Genet Epidemiol; 2020 Sep; 44(6):537-549. PubMed ID: 32519380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uncovering the total heritability explained by all true susceptibility variants in a genome-wide association study.
    So HC; Li M; Sham PC
    Genet Epidemiol; 2011 Sep; 35(6):447-56. PubMed ID: 21618601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ancestry-specific association mapping in admixed populations.
    Skotte L; Jørsboe E; Korneliussen TS; Moltke I; Albrechtsen A
    Genet Epidemiol; 2019 Jul; 43(5):506-521. PubMed ID: 30883944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance of epistasis detection methods in semi-simulated GWAS.
    Chatelain C; Durand G; Thuillier V; Augé F
    BMC Bioinformatics; 2018 Jun; 19(1):231. PubMed ID: 29914375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Powerful rare variant association testing in a copula-based joint analysis of multiple phenotypes.
    Konigorski S; Yilmaz YE; Janke J; Bergmann MM; Boeing H; Pischon T
    Genet Epidemiol; 2020 Jan; 44(1):26-40. PubMed ID: 31732979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate, ultra-low coverage genome reconstruction and association studies in Hybrid Swarm mapping populations.
    Weller CA; Tilk S; Rajpurohit S; Bergland AO
    G3 (Bethesda); 2021 Apr; 11(4):. PubMed ID: 33677482
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of measurement error on testing genetic association with quantitative traits.
    Liao J; Li X; Wong TY; Wang JJ; Khor CC; Tai ES; Aung T; Teo YY; Cheng CY
    PLoS One; 2014; 9(1):e87044. PubMed ID: 24475218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination.
    Collins C; Didelot X
    PLoS Comput Biol; 2018 Feb; 14(2):e1005958. PubMed ID: 29401456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide analysis of Mycobacterium tuberculosis polymorphisms reveals lineage-specific associations with drug resistance.
    Oppong YEA; Phelan J; Perdigão J; Machado D; Miranda A; Portugal I; Viveiros M; Clark TG; Hibberd ML
    BMC Genomics; 2019 Mar; 20(1):252. PubMed ID: 30922221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies.
    van der Sluis S; Posthuma D; Dolan CV
    PLoS Genet; 2013; 9(1):e1003235. PubMed ID: 23359524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide association study meta-analysis identifies three novel loci for circulating anti-Müllerian hormone levels in women.
    Verdiesen RMG; van der Schouw YT; van Gils CH; Verschuren WMM; Broekmans FJM; Borges MC; Gonçalves Soares AL; Lawlor DA; Eliassen AH; Kraft P; Sandler DP; Harlow SD; Smith JA; Santoro N; Schoemaker MJ; Swerdlow AJ; Murray A; Ruth KS; Onland-Moret NC
    Hum Reprod; 2022 May; 37(5):1069-1082. PubMed ID: 35274129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.