These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35338236)

  • 1. NT-CRISPR, combining natural transformation and CRISPR-Cas9 counterselection for markerless and scarless genome editing in Vibrio natriegens.
    Stukenberg D; Hoff J; Faber A; Becker A
    Commun Biol; 2022 Mar; 5(1):265. PubMed ID: 35338236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Construction of seamless genome editing system for fast-growing Vibrio natriegens].
    Wu F; Liang Y; Zhang Y; Huo Y; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2020 Nov; 36(11):2387-2397. PubMed ID: 33244933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scarless Cas9 Assisted Recombineering (no-SCAR) in Escherichia coli, an Easy-to-Use System for Genome Editing.
    Reisch CR; Prather KLJ
    Curr Protoc Mol Biol; 2017 Jan; 117():31.8.1-31.8.20. PubMed ID: 28060411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inducible CRISPR/Cas9 Allows for Multiplexed and Rapidly Segregated Single-Target Genome Editing in
    Cengic I; Cañadas IC; Minton NP; Hudson EP
    ACS Synth Biol; 2022 Sep; 11(9):3100-3113. PubMed ID: 35969224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli.
    Sun D; Wang L; Mao X; Fei M; Chen Y; Shen M; Qiu J
    Biotechnol Lett; 2019 Feb; 41(2):293-303. PubMed ID: 30547274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting targeted genome editing using the hei-tag.
    Thumberger T; Tavhelidse-Suck T; Gutierrez-Triana JA; Cornean A; Medert R; Welz B; Freichel M; Wittbrodt J
    Elife; 2022 Mar; 11():. PubMed ID: 35333175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multifunctional system for genome editing and large-scale interspecies gene transfer.
    Teufel M; Klein CA; Mager M; Sobetzko P
    Nat Commun; 2022 Jun; 13(1):3430. PubMed ID: 35701417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.
    Pyne ME; Bruder MR; Moo-Young M; Chung DA; Chou CP
    Sci Rep; 2016 May; 6():25666. PubMed ID: 27157668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing CRISPR-Cas9 for Genome Editing in Streptococcus pneumoniae D39V.
    Synefiaridou D; Veening JW
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33397704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpRY Cas9 Can Utilize a Variety of Protospacer Adjacent Motif Site Sequences To Edit the Candida albicans Genome.
    Evans BA; Bernstein DA
    mSphere; 2021 May; 6(3):. PubMed ID: 34011687
    [No Abstract]   [Full Text] [Related]  

  • 18. Expanding the capabilities of MuGENT for large-scale genetic engineering of the fastest-replicating species,
    Glasgo LD; Lukasiak KL; Zinser ER
    Microbiol Spectr; 2024 Jun; 12(6):e0396423. PubMed ID: 38667341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplex Genome Editing by Natural Transformation (MuGENT) for Synthetic Biology in Vibrio natriegens.
    Dalia TN; Hayes CA; Stolyar S; Marx CJ; McKinlay JB; Dalia AB
    ACS Synth Biol; 2017 Sep; 6(9):1650-1655. PubMed ID: 28571309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein.
    Dhokane D; Bhadra B; Dasgupta S
    Mol Biol Rep; 2020 Nov; 47(11):8747-8755. PubMed ID: 33074412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.