These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35338409)

  • 1. MODWT-ANN hybrid models for daily precipitation estimates with time-delayed entries in Amazon region.
    Gomes EP; Blanco CJC; da Silva Holanda P; de Oliveira Júnior JF
    Environ Monit Assess; 2022 Mar; 194(4):296. PubMed ID: 35338409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Accuracy evaluation of multi-satellite precipitation products over Circum-Bohai-Sea Region.].
    Li RZ; Zhang AD; Zhang H; Jiang J
    Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):2916-2924. PubMed ID: 29732855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.
    Tabbussum R; Dar AQ
    Environ Sci Pollut Res Int; 2021 May; 28(20):25265-25282. PubMed ID: 33453033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving one-dimensional pollution dispersion modeling in rivers using ANFIS and ANN-based GA optimized models.
    Seifi A; Riahi-Madvar H
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):867-885. PubMed ID: 30415370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling monthly mean air temperature using artificial neural network, adaptive neuro-fuzzy inference system and support vector regression methods: A case of study for Turkey.
    Yakut E; Süzülmüş S
    Network; 2020; 31(1-4):1-36. PubMed ID: 32397767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.
    Wong YJ; Arumugasamy SK; Chung CH; Selvarajoo A; Sethu V
    Environ Monit Assess; 2020 Jun; 192(7):439. PubMed ID: 32556670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rainfall time series disaggregation in mountainous regions using hybrid wavelet-artificial intelligence methods.
    Nourani V; Farboudfam N
    Environ Res; 2019 Jan; 168():306-318. PubMed ID: 30366282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving streamflow simulation by combining hydrological process-driven and artificial intelligence-based models.
    Mohammadi B; Moazenzadeh R; Christian K; Duan Z
    Environ Sci Pollut Res Int; 2021 Dec; 28(46):65752-65768. PubMed ID: 34319517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling daily water temperature for rivers: comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models.
    Zhu S; Heddam S; Nyarko EK; Hadzima-Nyarko M; Piccolroaz S; Wu S
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):402-420. PubMed ID: 30406582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of ANN and ANFIS models for reconstructing missing flow data.
    Dastorani MT; Moghadamnia A; Piri J; Rico-Ramirez M
    Environ Monit Assess; 2010 Jul; 166(1-4):421-34. PubMed ID: 19543999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States.
    Olyaie E; Banejad H; Chau KW; Melesse AM
    Environ Monit Assess; 2015 Apr; 187(4):189. PubMed ID: 25787167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different heuristic and decomposition techniques for river stage modeling.
    Seo Y; Kim S; Singh VP
    Environ Monit Assess; 2018 Jun; 190(7):392. PubMed ID: 29892912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nowcast flood predictions in the Amazon watershed based on the remotely sensed rainfall product PDIRnow and artificial neural networks.
    Filho HAR; Uliana EM; Aires URV; da Cruz IF; Lisboa L; da Silva DD; Viola MR; Duarte VBR
    Environ Monit Assess; 2024 Feb; 196(3):245. PubMed ID: 38326627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion-based framework for meteorological drought modeling using remotely sensed datasets under climate change scenarios: Resilience, vulnerability, and frequency analysis.
    Fooladi M; Golmohammadi MH; Safavi HR; Singh VP
    J Environ Manage; 2021 Nov; 297():113283. PubMed ID: 34280857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groundwater level response identification by hybrid wavelet-machine learning conjunction models using meteorological data.
    Samani S; Vadiati M; Nejatijahromi Z; Etebari B; Kisi O
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22863-22884. PubMed ID: 36308648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced rainfall prediction performance via hybrid empirical-singular-wavelet-fuzzy approaches.
    Küllahcı K; Altunkaynak A
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):58090-58108. PubMed ID: 36976466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial intelligence modeling to predict transmembrane pressure in anaerobic membrane bioreactor-sequencing batch reactor during biohydrogen production.
    Taheri E; Amin MM; Fatehizadeh A; Rezakazemi M; Aminabhavi TM
    J Environ Manage; 2021 Aug; 292():112759. PubMed ID: 33984638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP.
    Jalal FE; Xu Y; Iqbal M; Javed MF; Jamhiri B
    J Environ Manage; 2021 Jul; 289():112420. PubMed ID: 33831756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid fuzzy inference rules of descent method and wavelet function for volatility forecasting.
    Alenezy AH; Ismail MT; Jaber JJ; Wadi SA; Alkhawaldeh RS
    PLoS One; 2022; 17(12):e0278835. PubMed ID: 36490280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of artificial neural networks to predict the heavy metal contamination in the Bartin River.
    Ucun Ozel H; Gemici BT; Gemici E; Ozel HB; Cetin M; Sevik H
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):42495-42512. PubMed ID: 32705560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.