These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35338409)

  • 21. Bias correction framework for satellite precipitation products using a rain/no rain discriminative model.
    Xiao S; Zou L; Xia J; Yang Z; Yao T
    Sci Total Environ; 2022 Apr; 818():151679. PubMed ID: 34793793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multivariate modeling of pan evaporation in monthly temporal resolution using a hybrid evolutionary data-driven method (case study: Urmia Lake and Gavkhouni basins).
    Emadi A; Zamanzad-Ghavidel S; Fazeli S; Zarei S; Rashid-Niaghi A
    Environ Monit Assess; 2021 May; 193(6):355. PubMed ID: 34028631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland.
    Deo RC; Şahin M
    Environ Monit Assess; 2016 Feb; 188(2):90. PubMed ID: 26780409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.
    Bhatti HA; Rientjes T; Haile AT; Habib E; Verhoef W
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27314363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling water quality in an urban river using hydrological factors--data driven approaches.
    Chang FJ; Tsai YH; Chen PA; Coynel A; Vachaud G
    J Environ Manage; 2015 Mar; 151():87-96. PubMed ID: 25544251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ozone levels in the Empty Quarter of Saudi Arabia--application of adaptive neuro-fuzzy model.
    Rahman SM; Khondaker AN; Khan RA
    Environ Sci Pollut Res Int; 2013 May; 20(5):3395-404. PubMed ID: 23111771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two hybrid data-driven models for modeling water-air temperature relationship in rivers.
    Zhu S; Hadzima-Nyarko M; Gao A; Wang F; Wu J; Wu S
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):12622-12630. PubMed ID: 30895536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of monthly precipitation using various artificial models and comparison with mathematical models.
    Kassem Y; Gökçekuş H; Mosbah AAS
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):41209-41235. PubMed ID: 36630036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced rainfall prediction performance via hybrid empirical-singular-wavelet-fuzzy approaches.
    Küllahcı K; Altunkaynak A
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):58090-58108. PubMed ID: 36976466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.
    Heddam S
    Environ Monit Assess; 2014 Jan; 186(1):597-619. PubMed ID: 24057665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales.
    Duan Z; Liu J; Tuo Y; Chiogna G; Disse M
    Sci Total Environ; 2016 Dec; 573():1536-1553. PubMed ID: 27616713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of a novel artificial neural network model in flood forecasting.
    Wang G; Yang J; Hu Y; Li J; Yin Z
    Environ Monit Assess; 2022 Jan; 194(2):125. PubMed ID: 35076800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.
    Komasi M; Sharghi S
    Water Sci Technol; 2016; 73(8):1937-53. PubMed ID: 27120649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions.
    Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN
    Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective modelling of hydrogen and energy recovery in microbial electrolysis cell by artificial neural network and adaptive network-based fuzzy inference system.
    Hosseinzadeh A; Zhou JL; Altaee A; Baziar M; Li D
    Bioresour Technol; 2020 Nov; 316():123967. PubMed ID: 32777721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-century tree-ring precipitation record reveals increasing frequency of extreme dry events in the upper Blue Nile River catchment.
    Mokria M; Gebrekirstos A; Abiyu A; Van Noordwijk M; Bräuning A
    Glob Chang Biol; 2017 Dec; 23(12):5436-5454. PubMed ID: 28712116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An artificial neural network ensemble approach to generate air pollution maps.
    Van Roode S; Ruiz-Aguilar JJ; González-Enrique J; Turias IJ
    Environ Monit Assess; 2019 Nov; 191(12):727. PubMed ID: 31701254
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction.
    Subasi A
    Comput Biol Med; 2007 Feb; 37(2):227-44. PubMed ID: 16480706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring.
    Najah A; El-Shafie A; Karim OA; El-Shafie AH
    Environ Sci Pollut Res Int; 2014 Feb; 21(3):1658-1670. PubMed ID: 23949111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Artificial neural network modeling of dissolved oxygen in reservoir.
    Chen WB; Liu WC
    Environ Monit Assess; 2014 Feb; 186(2):1203-17. PubMed ID: 24078053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.