These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35338523)

  • 1. CRISPR/Cas9-Based Functional Genomics in Human Induced Pluripotent Stem Cell-Derived Models: Can "the Stars Align" for Neurodegenerative Diseases?
    Chen Y; Jong TT; Chen C; Sidransky E
    Mov Disord; 2022 May; 37(5):886-890. PubMed ID: 35338523
    [No Abstract]   [Full Text] [Related]  

  • 2. Optimized protocol for CRISPR knockout of human iPSC-derived macrophages.
    Navarro-Guerrero E; Baronio R; Tay C; Knight JC; Ebner DV
    STAR Protoc; 2024 Mar; 5(1):102903. PubMed ID: 38401123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.
    Zhang Y; Sastre D; Wang F
    Curr Stem Cell Res Ther; 2018; 13(4):243-251. PubMed ID: 29446747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of a heterozygous and a homozygous CSF1R knockout line from iPSC using CRISPR/Cas9.
    Schmitz AS; Korneck M; Raju J; Lamsfus-Calle A; Daniel-Moreno A; Antony JS; Mezger M; Schöls L; Hauser S; Hayer SN
    Stem Cell Res; 2023 Jun; 69():103066. PubMed ID: 36947995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome editing of hPSCs: Recent progress in hPSC-based disease modeling for understanding disease mechanisms.
    Choi DK; Kim YK; HoonYu J; Min SH; Park SW
    Prog Mol Biol Transl Sci; 2021; 181():271-287. PubMed ID: 34127196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Gene Editing of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9.
    Yumlu S; Bashir S; Stumm J; Kühn R
    Methods Mol Biol; 2019; 1961():137-151. PubMed ID: 30912045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review).
    Alagoz M; Kherad N
    Int J Mol Med; 2020 Aug; 46(2):521-534. PubMed ID: 32467995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reporter gene imaging "visualized" the integration of two growing technologies: CRISPR/Cas9-based genome editing and induced pluripotent stem cell therapy.
    Chiti A
    Eur J Nucl Med Mol Imaging; 2021 Mar; 48(3):664-665. PubMed ID: 33215320
    [No Abstract]   [Full Text] [Related]  

  • 9. CRISPR/Cas9 Technology as a Modern Genetic Manipulation Tool for Recapitulating of Neurodegenerative Disorders in Large Animal Models.
    Barazesh M; Mohammadi S; Bahrami Y; Mokarram P; Morowvat MH; Saidijam M; Karimipoor M; Kavousipour S; Vosoughi AR; Khanaki K
    Curr Gene Ther; 2021; 21(2):130-148. PubMed ID: 33319680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system.
    Itoh M; Kawagoe S; Tamai K; Nakagawa H; Asahina A; Okano HJ
    J Dermatol Sci; 2020 Jun; 98(3):163-172. PubMed ID: 32376152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas: An intriguing genomic editing tool with prospects in treating neurodegenerative diseases.
    Rahman S; Datta M; Kim J; Jan AT
    Semin Cell Dev Biol; 2019 Dec; 96():22-31. PubMed ID: 31102655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases.
    Kuruvilla J; Sasmita AO; Ling APK
    Neurol Sci; 2018 Nov; 39(11):1827-1835. PubMed ID: 30076486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 Genome Editing of Human-Induced Pluripotent Stem Cells Followed by Granulocytic Differentiation.
    Dannenmann B; Nasri M; Welte K; Skokowa J
    Methods Mol Biol; 2020; 2115():471-483. PubMed ID: 32006418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells.
    Geng BC; Choi KH; Wang SZ; Chen P; Pan XD; Dong NG; Ko JK; Zhu H
    Acta Pharmacol Sin; 2020 Nov; 41(11):1427-1432. PubMed ID: 32555510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of a human induced pluripotent stem cell line with Cas9 driven by Tet-on operator via AAVS1 safe harbor gene-editing.
    Ding Y; Wang L; Ji W; Chen Z; Wang D; Chen C; Tong H; Han Z; Niu C; Chu M; Huang J; Guo X
    Stem Cell Res; 2020 Dec; 49():102064. PubMed ID: 33207306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Editing in Induced Pluripotent Stem Cells using CRISPR/Cas9.
    Ben Jehuda R; Shemer Y; Binah O
    Stem Cell Rev Rep; 2018 Jun; 14(3):323-336. PubMed ID: 29623532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells.
    Giacalone JC; Sharma TP; Burnight ER; Fingert JF; Mullins RF; Stone EM; Tucker BA
    Curr Protoc Stem Cell Biol; 2018 Feb; 44():5B.7.1-5B.7.22. PubMed ID: 29512106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of CRISPR/Cas ribonucleoproteins for high throughput gene editing of induced pluripotent stem cells.
    Wang Q; Chear S; Wing K; Stellon D; Nguyen Tran MT; Talbot J; Pébay A; Hewitt AW; Cook AL
    Methods; 2021 Oct; 194():18-29. PubMed ID: 33607266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease.
    Powell SK; Gregory J; Akbarian S; Brennand KJ
    Mol Cell Neurosci; 2017 Jul; 82():157-166. PubMed ID: 28549865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced Pluripotent Stem Cells Meet Genome Editing.
    Hockemeyer D; Jaenisch R
    Cell Stem Cell; 2016 May; 18(5):573-86. PubMed ID: 27152442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.