BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35338607)

  • 21. Enhanced antiviral benefit of combination therapy with anti-HBV and anti-PD1 gRNA/cas9 produces a synergistic antiviral effect in HBV infection.
    Zhen S; Qiang R; Lu J; Tuo X; Yang X; Li X
    Mol Immunol; 2021 Feb; 130():7-13. PubMed ID: 33340931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multigene editing via CRISPR/Cas9 guided by a single-sgRNA seed in Arabidopsis.
    Yu Z; Chen Q; Chen W; Zhang X; Mei F; Zhang P; Zhao M; Wang X; Shi N; Jackson S; Hong Y
    J Integr Plant Biol; 2018 May; 60(5):376-381. PubMed ID: 29226588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR Nickase-Mediated Base Editing in Yeast.
    Kuroda K; Ueda M
    Methods Mol Biol; 2021; 2196():27-37. PubMed ID: 32889710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Small Molecular Inhibitors of DNA Double Strand Break Repair Pathways Increase the ANTI-HBV Activity of CRISPR/Cas9].
    Kostyusheva AP; Kostyushev DS; Brezgin SA; Zarifyan DN; Volchkova EV; Chulanov VP
    Mol Biol (Mosk); 2019; 53(2):311-323. PubMed ID: 31099781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR/Cas9-based tools for targeted genome editing and replication control of HBV.
    Peng C; Lu M; Yang D
    Virol Sin; 2015 Oct; 30(5):317-25. PubMed ID: 26511989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved plant cytosine base editors with high editing activity, purity, and specificity.
    Ren Q; Sretenovic S; Liu G; Zhong Z; Wang J; Huang L; Tang X; Guo Y; Liu L; Wu Y; Zhou J; Zhao Y; Yang H; He Y; Liu S; Yin D; Mayorga R; Zheng X; Zhang T; Qi Y; Zhang Y
    Plant Biotechnol J; 2021 Oct; 19(10):2052-2068. PubMed ID: 34042262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide loss-of-function genetic screen identifies INSIG2 as the vulnerability of hepatitis B virus-integrated hepatoma cells.
    Fukuoka M; Kodama T; Murai K; Hikita H; Sometani E; Sung J; Shimoda A; Shigeno S; Motooka D; Nishio A; Furuta K; Tatsumi T; Yusa K; Takehara T
    Cancer Sci; 2024 Mar; 115(3):859-870. PubMed ID: 38287498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-BETS: a base-editing design tool for generating stop codons.
    Wu Y; He Y; Sretenovic S; Liu S; Cheng Y; Han Y; Liu G; Bao Y; Fang Q; Zheng X; Zhou J; Qi Y; Zhang Y; Zhang T
    Plant Biotechnol J; 2022 Mar; 20(3):499-510. PubMed ID: 34669232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE.
    Zhao D; Jiang G; Li J; Chen X; Li S; Wang J; Zhou Z; Pu S; Dai Z; Ma Y; Bi C; Zhang X
    Nucleic Acids Res; 2022 Apr; 50(7):4161-4170. PubMed ID: 35349689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene Editing in B-Lymphoma Cell Lines Using CRISPR/Cas9 Technology.
    Bai B; Myklebust JH; Wälchli S
    Methods Mol Biol; 2020; 2115():445-454. PubMed ID: 32006416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-Cas9-Guided Genome Engineering in C. elegans.
    Kim HM; Colaiácovo MP
    Curr Protoc Mol Biol; 2016 Jul; 115():31.7.1-31.7.18. PubMed ID: 27366893
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineered extracellular vesicles for delivering functional Cas9/gRNA to eliminate hepatitis B virus cccDNA and integration.
    Zeng W; Zheng L; Li Y; Yang J; Mao T; Zhang J; Liu Y; Ning J; Zhang T; Huang H; Chen X; Lu F
    Emerg Microbes Infect; 2024 Dec; 13(1):2284286. PubMed ID: 37982370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of gene disruption induced by cytosine base editing-mediated iSTOP with CRISPR/Cas9-mediated frameshift.
    Dang L; Li G; Wang X; Huang S; Zhang Y; Miao Y; Zeng L; Cui S; Huang X
    Cell Prolif; 2020 May; 53(5):e12820. PubMed ID: 32350961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing.
    Feng Y; Liu S; Chen R; Xie A
    J Zhejiang Univ Sci B; 2021 Jan; 22(1):73-86. PubMed ID: 33448189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [CRISPR/CAS9, the King of Genome Editing Tools].
    Bannikov AV; Lavrov AV
    Mol Biol (Mosk); 2017; 51(4):582-594. PubMed ID: 28900076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
    Zhang WW; Matlashewski G
    mBio; 2015 Jul; 6(4):e00861. PubMed ID: 26199327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRISPR single base-editing: in silico predictions to variant clonal cell lines.
    Dickson KA; Field N; Blackman T; Ma Y; Xie T; Kurangil E; Idrees S; Rathnayake SNH; Mahbub RM; Faiz A; Marsh DJ
    Hum Mol Genet; 2023 Aug; 32(17):2704-2716. PubMed ID: 37369005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Application of clustered regularly interspaced short palindromic repeats- associated protein 9 gene editing technology for treatment of HBV infection].
    Wang YD; Liang QF; Li ZY; Zhao CY
    Zhonghua Gan Zang Bing Za Zhi; 2018 Nov; 26(11):860-864. PubMed ID: 30616324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication.
    Dong C; Qu L; Wang H; Wei L; Dong Y; Xiong S
    Antiviral Res; 2015 Jun; 118():110-7. PubMed ID: 25843425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.