These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 35338684)
1. The Role of Entropy Gains in the Exciton Separation in Organic Solar Cells. Yan Y; Zhang Y; Memon WA; Wang M; Zhang X; Wei Z Macromol Rapid Commun; 2022 Aug; 43(16):e2100903. PubMed ID: 35338684 [TBL] [Abstract][Full Text] [Related]
2. Charge-transfer excitons at organic semiconductor surfaces and interfaces. Zhu XY; Yang Q; Muntwiler M Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979 [TBL] [Abstract][Full Text] [Related]
3. Molecular Insight into Efficient Charge Generation in Low-Driving-Force Nonfullerene Organic Solar Cells. Han G; Yi Y Acc Chem Res; 2022 Mar; 55(6):869-877. PubMed ID: 35230078 [TBL] [Abstract][Full Text] [Related]
4. Barrier-Free Charge Separation Enabled by Electronic Polarization in High-Efficiency Non-fullerene Organic Solar Cells. Tu Z; Han G; Yi Y J Phys Chem Lett; 2020 Apr; 11(7):2585-2591. PubMed ID: 32163716 [TBL] [Abstract][Full Text] [Related]
5. Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface. Chen L; Zhang Q; Lei Y; Zhu F; Wu B; Zhang T; Niu G; Xiong Z; Song Q Phys Chem Chem Phys; 2013 Oct; 15(39):16891-7. PubMed ID: 24002235 [TBL] [Abstract][Full Text] [Related]
6. Increases in the Charge Separation Barrier in Organic Solar Cells Due to Delocalization. Gluchowski A; Gray KLG; Hood SN; Kassal I J Phys Chem Lett; 2018 Mar; 9(6):1359-1364. PubMed ID: 29494769 [TBL] [Abstract][Full Text] [Related]
7. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Jailaubekov AE; Willard AP; Tritsch JR; Chan WL; Sai N; Gearba R; Kaake LG; Williams KJ; Leung K; Rossky PJ; Zhu XY Nat Mater; 2013 Jan; 12(1):66-73. PubMed ID: 23223125 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional Bilayer Template for Near-Infrared-Sensitive Organic Solar Cells. Kim H; Park HG; Maeng MJ; Kang YR; Park KR; Choi J; Park Y; Kim YD; Kim C ACS Appl Mater Interfaces; 2018 May; 10(19):16681-16689. PubMed ID: 29676150 [TBL] [Abstract][Full Text] [Related]
9. Nonequilibrium Thermodynamics of Charge Separation in Organic Solar Cells. Kaiser W; Janković V; Vukmirović N; Gagliardi A J Phys Chem Lett; 2021 Jul; 12(27):6389-6397. PubMed ID: 34232672 [TBL] [Abstract][Full Text] [Related]
10. Magneto-optical investigations on the formation and dissociation of intermolecular charge-transfer complexes at donor-acceptor interfaces in bulk-heterojunction organic solar cells. Zang H; Xu Z; Hu B J Phys Chem B; 2010 May; 114(17):5704-9. PubMed ID: 20392090 [TBL] [Abstract][Full Text] [Related]
11. Effects of Fluorination on Fused Ring Electron Acceptor for Active Layer Morphology, Exciton Dissociation, and Charge Recombination in Organic Solar Cells. Hou L; Lv J; Wobben F; Le Corre VM; Tang H; Singh R; Kim M; Wang F; Sun H; Chen W; Xiao Z; Kumar M; Xu T; Zhang W; McCulloch I; Duan T; Xie H; Koster LJA; Lu S; Kan Z ACS Appl Mater Interfaces; 2020 Dec; 12(50):56231-56239. PubMed ID: 33270414 [TBL] [Abstract][Full Text] [Related]
12. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells. Naveed HB; Zhou K; Ma W Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121 [TBL] [Abstract][Full Text] [Related]
13. Theoretical Study of the Charge Transfer Exciton Binding Energy in Semiconductor Materials for Polymer:Fullerene-Based Bulk Heterojunction Solar Cells. Izquierdo MA; Broer R; Havenith RWA J Phys Chem A; 2019 Feb; 123(6):1233-1242. PubMed ID: 30676720 [TBL] [Abstract][Full Text] [Related]
14. Energetics of exciton binding and dissociation in polythiophenes: a tight binding approach. Bombile JH; Janik MJ; Milner ST Phys Chem Chem Phys; 2019 Jun; 21(22):11999-12011. PubMed ID: 31134991 [TBL] [Abstract][Full Text] [Related]
15. Long-Range Hot Charge Transfer Exciton Dissociation in an Organic/2D Semiconductor Hybrid Excitonic Heterostructure. Wang Z; Sun C; Xu X; Liu Y; Chen Z; Yang YM; Zhu H J Am Chem Soc; 2023 May; 145(20):11227-11235. PubMed ID: 37159928 [TBL] [Abstract][Full Text] [Related]
16. Theoretical study on the cooperative exciton dissociation process based on dimensional and hot charge-transfer state effects in an organic photocell. Shimazaki T; Nakajima T J Chem Phys; 2016 Jun; 144(23):234906. PubMed ID: 27334193 [TBL] [Abstract][Full Text] [Related]
17. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Wu K; Zhu H; Lian T Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713 [TBL] [Abstract][Full Text] [Related]
18. How quasi-free holes and electrons are generated in organic photovoltaic interfaces. Troisi A Faraday Discuss; 2013; 163():377-92; discussion 393-432. PubMed ID: 24020212 [TBL] [Abstract][Full Text] [Related]
19. Coulomb barrier for charge separation at an organic semiconductor interface. Muntwiler M; Yang Q; Tisdale WA; Zhu XY Phys Rev Lett; 2008 Nov; 101(19):196403. PubMed ID: 19113289 [TBL] [Abstract][Full Text] [Related]
20. Charge Transfer Excitation and Asymmetric Energy Transfer at the Interface of Pentacene-Perfluoropentacene Heterostacks. Hansmann AK; Döring RC; Rinn A; Giesen SM; Fey M; Breuer T; Berger R; Witte G; Chatterjee S ACS Appl Mater Interfaces; 2021 Feb; 13(4):5284-5292. PubMed ID: 33492144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]