BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 35338712)

  • 1. Optimization of CRISPR/Cas9-mediated gene disruption in Xenopus laevis using a phenotypic image analysis technique.
    Tanouchi M; Igawa T; Suzuki N; Suzuki M; Hossain N; Ochi H; Ogino H
    Dev Growth Differ; 2022 May; 64(4):219-225. PubMed ID: 35338712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis.
    Kato S; Fukazawa T; Kubo T
    Biochem Biophys Res Commun; 2021 Mar; 543():50-55. PubMed ID: 33515912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders.
    Shigeta M; Sakane Y; Iida M; Suzuki M; Kashiwagi K; Kashiwagi A; Fujii S; Yamamoto T; Suzuki KT
    Genes Cells; 2016 Jul; 21(7):755-71. PubMed ID: 27219625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9-Based Functional Analysis in Amphibians: Xenopus laevis, Xenopus tropicalis, and Pleurodeles waltl.
    Suzuki M; Iida M; Hayashi T; Suzuki KT
    Methods Mol Biol; 2023; 2637():341-357. PubMed ID: 36773159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue-Targeted CRISPR-Cas9-Mediated Genome Editing of Multiple Homeologs in F
    Corkins ME; DeLay BD; Miller RK
    Cold Spring Harb Protoc; 2022 Mar; 2022(3):. PubMed ID: 34911820
    [No Abstract]   [Full Text] [Related]  

  • 6. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis.
    Guo X; Zhang T; Hu Z; Zhang Y; Shi Z; Wang Q; Cui Y; Wang F; Zhao H; Chen Y
    Development; 2014 Feb; 141(3):707-14. PubMed ID: 24401372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-Specific Gene Inactivation in
    DeLay BD; Corkins ME; Hanania HL; Salanga M; Deng JM; Sudou N; Taira M; Horb ME; Miller RK
    Genetics; 2018 Feb; 208(2):673-686. PubMed ID: 29187504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for CRISPR/Cas9 Xenopus tropicalis Tissue-Specific Multiplex Genome Engineering.
    Naert T; Vleminckx K
    Methods Mol Biol; 2018; 1865():33-54. PubMed ID: 30151757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and Analysis of Xenopus laevis Models of Retinal Degeneration Using CRISPR/Cas9.
    Feehan JM; Stanar P; Tam BM; Chiu C; Moritz OL
    Methods Mol Biol; 2019; 1834():193-207. PubMed ID: 30324446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9.
    Feehan JM; Chiu CN; Stanar P; Tam BM; Ahmed SN; Moritz OL
    Sci Rep; 2017 Jul; 7(1):6920. PubMed ID: 28761125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-based simple transgenesis in Xenopus laevis.
    Shibata Y; Suzuki M; Hirose N; Takayama A; Sanbo C; Inoue T; Umesono Y; Agata K; Ueno N; Suzuki KT; Mochii M
    Dev Biol; 2022 Sep; 489():76-83. PubMed ID: 35690103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 Mutagenesis in
    Blitz IL; Nakayama T
    Cold Spring Harb Protoc; 2022 Mar; 2022(3):. PubMed ID: 34244352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of mutation rates, mosaicism and off target mutations when injecting Cas9 mRNA or protein for genome editing of bovine embryos.
    Hennig SL; Owen JR; Lin JC; Young AE; Ross PJ; Van Eenennaam AL; Murray JD
    Sci Rep; 2020 Dec; 10(1):22309. PubMed ID: 33339870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating Nonmosaic Mutants in
    Cha SW
    Cold Spring Harb Protoc; 2022 Jun; 2022(6):Pdb.prot106989. PubMed ID: 34244351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the functions of nonclassical MHC class Ib genes in Xenopus laevis by the CRISPR/Cas9 system.
    Banach M; Edholm ES; Robert J
    Dev Biol; 2017 Jun; 426(2):261-269. PubMed ID: 27318386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Base Editing via RNA-Guided Cytidine Deaminases in Xenopus laevis Embryos.
    Park DS; Yoon M; Kweon J; Jang AH; Kim Y; Choi SC
    Mol Cells; 2017 Nov; 40(11):823-827. PubMed ID: 29179261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A CRISPR-Cas9-mediated versatile method for targeted integration of a fluorescent protein gene to visualize endogenous gene expression in Xenopus laevis.
    Mochii M; Akizuki K; Ossaka H; Kagawa N; Umesono Y; Suzuki KT
    Dev Biol; 2024 Feb; 506():42-51. PubMed ID: 38052295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient genome editing in cultured cells and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system.
    Su X; Cui K; Du S; Li H; Lu F; Shi D; Liu Q
    In Vitro Cell Dev Biol Anim; 2018 May; 54(5):375-383. PubMed ID: 29556895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis.
    Nakayama T; Grainger RM; Cha SW
    Genesis; 2020 Jun; 58(6):e23366. PubMed ID: 32277804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.