These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 35338720)

  • 21. Functional analysis of the Mycobacterium tuberculosis MprAB two-component signal transduction system.
    Zahrt TC; Wozniak C; Jones D; Trevett A
    Infect Immun; 2003 Dec; 71(12):6962-70. PubMed ID: 14638785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR.
    Saini DK; Malhotra V; Dey D; Pant N; Das TK; Tyagi JS
    Microbiology (Reading); 2004 Apr; 150(Pt 4):865-875. PubMed ID: 15073296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A genetic screen for mutations affecting temperature sensing in Bacillus subtilis.
    Díaz AR; Porrini L; de Mendoza D; Mansilla MC
    Microbiology (Reading); 2019 Jan; 165(1):90-101. PubMed ID: 30431418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis.
    Bretl DJ; Demetriadou C; Zahrt TC
    Microbiol Mol Biol Rev; 2011 Dec; 75(4):566-82. PubMed ID: 22126994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis growth in human macrophages.
    Haydel SE; Clark-Curtiss JE
    FEMS Microbiol Lett; 2004 Jul; 236(2):341-7. PubMed ID: 15251217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family.
    Steyn AJ; Joseph J; Bloom BR
    Mol Microbiol; 2003 Feb; 47(4):1075-89. PubMed ID: 12581360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diversity in Sensing and Signaling of Bacterial Sensor Histidine Kinases.
    Ishii E; Eguchi Y
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphatase-defective DevS sensor kinase mutants permit constitutive expression of DevR-regulated dormancy genes in Mycobacterium tuberculosis.
    Kumari P; Kumar S; Kaur K; Gupta UD; Bhagyawant SS; Tyagi JS
    Biochem J; 2020 May; 477(9):1669-1682. PubMed ID: 32309848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mycobacterium tuberculosis PE_PGRS20 and PE_PGRS47 Proteins Inhibit Autophagy by Interaction with Rab1A.
    Strong EJ; Ng TW; Porcelli SA; Lee S
    mSphere; 2021 Aug; 6(4):e0054921. PubMed ID: 34346699
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of two-component regulatory systems in intracellular survival of Mycobacterium tuberculosis.
    Li X; Lv X; Lin Y; Zhen J; Ruan C; Duan W; Li Y; Xie J
    J Cell Biochem; 2019 Aug; 120(8):12197-12207. PubMed ID: 31026098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial hybrid histidine kinases in plant-bacteria interactions.
    Borland S; Prigent-Combaret C; Wisniewski-Dyé F
    Microbiology (Reading); 2016 Oct; 162(10):1715-1734. PubMed ID: 27609064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein kinase and phosphatase signaling in Mycobacterium tuberculosis physiology and pathogenesis.
    Chao J; Wong D; Zheng X; Poirier V; Bach H; Hmama Z; Av-Gay Y
    Biochim Biophys Acta; 2010 Mar; 1804(3):620-7. PubMed ID: 19766738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-Component Signaling Systems Regulate Diverse Virulence-Associated Traits in Pseudomonas aeruginosa.
    Wang BX; Cady KC; Oyarce GC; Ribbeck K; Laub MT
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33771779
    [No Abstract]   [Full Text] [Related]  

  • 34. HrgS (Avin_34990), a novel histidine-kinase related to GacS, regulates alginate synthesis in Azotobacter vinelandii.
    López-Pliego L; González-Acocal V; García-González DL; Reyes-Nicolau JI; Sánchez-Cuapio Z; Meneses-Carbajal AS; Fuentes-Ramírez LE; Castañeda M
    FEMS Microbiol Lett; 2022 Feb; 369(1):. PubMed ID: 35266527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane Sensor Histidine Kinases: Insights from Structural, Ligand and Inhibitor Studies of Full-Length Proteins and Signalling Domains for Antibiotic Discovery.
    Ma P; Phillips-Jones MK
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding HIV-Mycobacteria synergism through comparative proteomics of intra-phagosomal mycobacteria during mono- and HIV co-infection.
    Ganji R; Dhali S; Rizvi A; Rapole S; Banerjee S
    Sci Rep; 2016 Feb; 6():22060. PubMed ID: 26916387
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of two-component systems in the physiology of Mycobacterium tuberculosis.
    Kundu M
    IUBMB Life; 2018 Aug; 70(8):710-717. PubMed ID: 29885211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual phosphorylation in response regulator protein PrrA is crucial for intracellular survival of mycobacteria consequent upon transcriptional activation.
    Mishra AK; Yabaji SM; Dubey RK; Dhamija E; Srivastava KK
    Biochem J; 2017 Dec; 474(24):4119-4136. PubMed ID: 29101285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unnatural amino acid substitution as a probe of the allosteric coupling pathway in a mycobacterial Cu(I) sensor.
    Ma Z; Cowart DM; Ward BP; Arnold RJ; DiMarchi RD; Zhang L; George GN; Scott RA; Giedroc DP
    J Am Chem Soc; 2009 Dec; 131(50):18044-5. PubMed ID: 19928961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity-based ATP analog probes for bacterial histidine kinases.
    Lembke HK; Carlson EE
    Methods Enzymol; 2022; 664():59-84. PubMed ID: 35331379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.