BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35338753)

  • 1. The effect of acute intermittent hypoxia on human limb motoneurone output.
    Finn HT; Bogdanovski O; Hudson AL; McCaughey EJ; Crawford MR; Taylor JL; Butler JE; Gandevia SC
    Exp Physiol; 2022 Jun; 107(6):615-630. PubMed ID: 35338753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of acute intermittent hypoxia on cortico-diaphragmatic conduction in healthy humans.
    Welch JF; Perim RR; Argento PJ; Sutor TW; Vose AK; Nair J; Mitchell GS; Fox EJ
    Exp Neurol; 2021 May; 339():113651. PubMed ID: 33607080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor evoked potentials in the human upper and lower limb do not increase after single 30-minute sessions of acute intermittent hypoxia.
    Mathew AJ; Finn HT; Carter SG; Gandevia SC; Butler JE
    J Appl Physiol (1985); 2024 May; ():. PubMed ID: 38722751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia.
    Christiansen L; Chen B; Lei Y; Urbin MA; Richardson MSA; Oudega M; Sandhu M; Rymer WZ; Trumbower RD; Mitchell GS; Perez MA
    Exp Neurol; 2021 Jan; 335():113483. PubMed ID: 32987000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Daily acute intermittent hypoxia enhances phrenic motor output and stimulus-evoked phrenic responses in rats.
    Perim RR; Sunshine MD; Welch JF; Santiago J; Holland A; Ross A; Mitchell GS; Gonzalez-Rothi EJ
    J Neurophysiol; 2021 Sep; 126(3):777-790. PubMed ID: 34260289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute intermittent hypercapnic-hypoxia elicits central neural respiratory motor plasticity in humans.
    Welch JF; Nair J; Argento PJ; Mitchell GS; Fox EJ
    J Physiol; 2022 May; 600(10):2515-2533. PubMed ID: 35348218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-session effects of acute intermittent hypoxia on breathing function after human spinal cord injury.
    Sutor T; Cavka K; Vose AK; Welch JF; Davenport P; Fuller DD; Mitchell GS; Fox EJ
    Exp Neurol; 2021 Aug; 342():113735. PubMed ID: 33951477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury.
    Urbin MA; Ozdemir RA; Tazoe T; Perez MA
    J Neurophysiol; 2017 Oct; 118(4):2171-2180. PubMed ID: 28468994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy and time course of acute intermittent hypoxia effects in the upper extremities of people with cervical spinal cord injury.
    Sandhu MS; Perez MA; Oudega M; Mitchell GS; Rymer WZ
    Exp Neurol; 2021 Aug; 342():113722. PubMed ID: 33932397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute intermittent hypoxia enhances corticospinal synaptic plasticity in humans.
    Christiansen L; Urbin MA; Mitchell GS; Perez MA
    Elife; 2018 Apr; 7():. PubMed ID: 29688171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UBC-Nepal expedition: acclimatization to high-altitude increases spinal motoneurone excitability during fatigue in humans.
    Ruggiero L; Yacyshyn AF; Nettleton J; McNeil CJ
    J Physiol; 2018 Aug; 596(15):3327-3339. PubMed ID: 29130497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Daily acute intermittent hypoxia combined with walking practice enhances walking performance but not intralimb motor coordination in persons with chronic incomplete spinal cord injury.
    Tan AQ; Sohn WJ; Naidu A; Trumbower RD
    Exp Neurol; 2021 Jun; 340():113669. PubMed ID: 33647273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transspinal stimulation increases motoneuron output of multiple segments in human spinal cord injury.
    Murray LM; Knikou M
    PLoS One; 2019; 14(3):e0213696. PubMed ID: 30845251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Daily acute intermittent hypoxia enhances serotonergic innervation of hypoglossal motor nuclei in rats with and without cervical spinal injury.
    Ciesla MC; Seven YB; Allen LL; Smith KN; Gonzalez-Rothi EJ; Mitchell GS
    Exp Neurol; 2022 Jan; 347():113903. PubMed ID: 34699788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of acute intermittent hypoxia on corticospinal excitability within the primary motor cortex.
    Radia S; Vallence AM; Fujiyama H; Fitzpatrick R; Etherington S; Scott BR; Girard O
    Eur J Appl Physiol; 2022 Sep; 122(9):2111-2123. PubMed ID: 35752660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Relationship between Trans-Lesional Conduction, Motor Neuron Pool Excitability, and Motor Function in Dogs with Incomplete Recovery from Severe Spinal Cord Injury.
    Lewis MJ; Howard JF; Olby NJ
    J Neurotrauma; 2017 Nov; 34(21):2994-3002. PubMed ID: 28462632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermittent Hypoxia Enhances Functional Connectivity of Midcervical Spinal Interneurons.
    Streeter KA; Sunshine MD; Patel S; Gonzalez-Rothi EJ; Reier PJ; Baekey DM; Fuller DD
    J Neurosci; 2017 Aug; 37(35):8349-8362. PubMed ID: 28751456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute intermittent hypoxia and rehabilitative training following cervical spinal injury alters neuronal hypoxia- and plasticity-associated protein expression.
    Hassan A; Arnold BM; Caine S; Toosi BM; Verge VMK; Muir GD
    PLoS One; 2018; 13(5):e0197486. PubMed ID: 29775479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolonged acute intermittent hypoxia improves forelimb reach-to-grasp function in a rat model of chronic cervical spinal cord injury.
    Arnold BM; Toosi BM; Caine S; Mitchell GS; Muir GD
    Exp Neurol; 2021 Jun; 340():113672. PubMed ID: 33652030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-intensity, low-frequency repetitive transcranial magnetic stimulation enhances excitability of the human corticospinal pathway.
    D'Amico JM; Dongés SC; Taylor JL
    J Neurophysiol; 2020 May; 123(5):1969-1978. PubMed ID: 32292098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.