These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A Variational Approach to Morphogenesis : Recovering Spatial Phenotypic Features from Epigenetic Landscapes. Cortés-Poza Y; Padilla-Longoria P Bull Math Biol; 2022 Jan; 84(3):33. PubMed ID: 35072810 [TBL] [Abstract][Full Text] [Related]
3. Spatial dynamics of floral organ formation. Cortes-Poza Y; Padilla-Longoria P; Alvarez-Buylla E J Theor Biol; 2018 Oct; 454():30-40. PubMed ID: 29857084 [TBL] [Abstract][Full Text] [Related]
4. A Monte Carlo method for in silico modeling and visualization of Waddington's epigenetic landscape with intermediate details. Zhang X; Chong KH; Zhu L; Zheng J Biosystems; 2020 Dec; 198():104275. PubMed ID: 33080349 [TBL] [Abstract][Full Text] [Related]
5. Reshaping the epigenetic landscape during early flower development: induction of attractor transitions by relative differences in gene decay rates. Davila-Velderrain J; Villarreal C; Alvarez-Buylla ER BMC Syst Biol; 2015 May; 9():20. PubMed ID: 25967891 [TBL] [Abstract][Full Text] [Related]
6. Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. Alvarez-Buylla ER; Chaos A; Aldana M; Benítez M; Cortes-Poza Y; Espinosa-Soto C; Hartasánchez DA; Lotto RB; Malkin D; Escalera Santos GJ; Padilla-Longoria P PLoS One; 2008; 3(11):e3626. PubMed ID: 18978941 [TBL] [Abstract][Full Text] [Related]
7. From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: making biological sense of theoretical approaches. Alvarez-Buylla ER; Azpeitia E; Barrio R; Benítez M; Padilla-Longoria P Semin Cell Dev Biol; 2010 Feb; 21(1):108-17. PubMed ID: 19922810 [TBL] [Abstract][Full Text] [Related]
8. The Arabidopsis thaliana flower organ specification gene regulatory network determines a robust differentiation process. Sánchez-Corrales YE; Alvarez-Buylla ER; Mendoza L J Theor Biol; 2010 Jun; 264(3):971-83. PubMed ID: 20303988 [TBL] [Abstract][Full Text] [Related]
9. A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Espinosa-Soto C; Padilla-Longoria P; Alvarez-Buylla ER Plant Cell; 2004 Nov; 16(11):2923-39. PubMed ID: 15486106 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide dynamic network analysis reveals a critical transition state of flower development in Arabidopsis. Zhang F; Liu X; Zhang A; Jiang Z; Chen L; Zhang X BMC Plant Biol; 2019 Jan; 19(1):11. PubMed ID: 30616516 [TBL] [Abstract][Full Text] [Related]
11. TMELand: An end-to-end Pipeline for Quantification and Visualization of Waddington's Epigenetic Landscape based on Gene Regulatory Network. Zhu L; Kang X; Li C; Zheng J IEEE/ACM Trans Comput Biol Bioinform; 2023 Jun; PP():. PubMed ID: 37310837 [TBL] [Abstract][Full Text] [Related]
12. Co-ordination of Flower Development Through Epigenetic Regulation in Two Model Species: Rice and Arabidopsis. Guo S; Sun B; Looi LS; Xu Y; Gan ES; Huang J; Ito T Plant Cell Physiol; 2015 May; 56(5):830-42. PubMed ID: 25746984 [TBL] [Abstract][Full Text] [Related]
13. Flower development as an interplay between dynamical physical fields and genetic networks. Barrio RÁ; Hernández-Machado A; Varea C; Romero-Arias JR; Alvarez-Buylla E PLoS One; 2010 Oct; 5(10):e13523. PubMed ID: 21048956 [TBL] [Abstract][Full Text] [Related]
14. Gene regulatory network models for floral organ determination. Azpeitia E; Davila-Velderrain J; Villarreal C; Alvarez-Buylla ER Methods Mol Biol; 2014; 1110():441-69. PubMed ID: 24395275 [TBL] [Abstract][Full Text] [Related]
15. Dynamical analysis of cellular ageing by modeling of gene regulatory network based attractor landscape. Chong KH; Zhang X; Zheng J PLoS One; 2018; 13(6):e0197838. PubMed ID: 29856751 [TBL] [Abstract][Full Text] [Related]