These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 3533926)
1. Deletion of the propeptide from human preproapolipoprotein A-II redirects cotranslational processing by signal peptidase. Folz RJ; Gordon JI J Biol Chem; 1986 Nov; 261(31):14752-9. PubMed ID: 3533926 [TBL] [Abstract][Full Text] [Related]
2. The effects of deleting the propeptide from human preproapolipoprotein A-I on co-translational translocation and signal peptidase processing. Folz RJ; Gordon JI J Biol Chem; 1987 Dec; 262(35):17221-30. PubMed ID: 3316231 [TBL] [Abstract][Full Text] [Related]
3. Structural requirements of human preproapolipoprotein AI for translocation and processing studied by site-directed mutagenesis in vitro. Stoffel W; Binczek E Biol Chem Hoppe Seyler; 1988 Sep; 369(9):1055-63. PubMed ID: 3228490 [TBL] [Abstract][Full Text] [Related]
4. Structural features in the NH2-terminal region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase. Nothwehr SF; Gordon JI J Biol Chem; 1990 Oct; 265(28):17202-8. PubMed ID: 2120214 [TBL] [Abstract][Full Text] [Related]
5. Substrate specificity of eukaryotic signal peptidase. Site-saturation mutagenesis at position -1 regulates cleavage between multiple sites in human pre (delta pro) apolipoprotein A-II. Folz RJ; Nothwehr SF; Gordon JI J Biol Chem; 1988 Feb; 263(4):2070-8. PubMed ID: 3276681 [TBL] [Abstract][Full Text] [Related]
6. Residues flanking the COOH-terminal C-region of a model eukaryotic signal peptide influence the site of its cleavage by signal peptidase and the extent of coupling of its co-translational translocation and proteolytic processing in vitro. Nothwehr SF; Hoeltzli SD; Allen KL; Lively MO; Gordon JI J Biol Chem; 1990 Dec; 265(35):21797-803. PubMed ID: 2123875 [TBL] [Abstract][Full Text] [Related]
7. Uncoupling of co-translational translocation from signal peptidase processing in a mutant rat preapolipoprotein-A-IV with a deletion that includes the COOH-terminal region of its signal peptide. Nothwehr SF; Folz RJ; Gordon JI J Biol Chem; 1989 Mar; 264(8):4642-7. PubMed ID: 2647742 [TBL] [Abstract][Full Text] [Related]
8. Human apolipoprotein A-II: complete nucleic acid sequence of preproapo A-II. Lackner KJ; Law SW; Brewer HB FEBS Lett; 1984 Sep; 175(1):159-64. PubMed ID: 6090207 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis of human preproapolipoprotein A-II. Gordon JI; Budelier KA; Sims HF; Edelstein C; Scanu AM; Strauss AW J Biol Chem; 1983 Nov; 258(22):14054-9. PubMed ID: 6315718 [TBL] [Abstract][Full Text] [Related]
10. Possible involvement of inefficient cleavage of preprovasopressin by signal peptidase as a cause for familial central diabetes insipidus. Ito M; Oiso Y; Murase T; Kondo K; Saito H; Chinzei T; Racchi M; Lively MO J Clin Invest; 1993 Jun; 91(6):2565-71. PubMed ID: 8514868 [TBL] [Abstract][Full Text] [Related]
11. Importance of the propeptide sequence of human preproparathyroid hormone for signal sequence function. Wiren KM; Potts JT; Kronenberg HM J Biol Chem; 1988 Dec; 263(36):19771-7. PubMed ID: 3198649 [TBL] [Abstract][Full Text] [Related]
12. Proteolytic processing of human preproapolipoprotein A-I. A proposed defect in the conversion of pro A-I to A-I in Tangier's disease. Gordon JI; Sims HF; Lentz SR; Edelstein C; Scanu AM; Strauss AW J Biol Chem; 1983 Mar; 258(6):4037-44. PubMed ID: 6300070 [TBL] [Abstract][Full Text] [Related]
13. Eukaryotic signal peptide structure/function relationships. Identification of conformational features which influence the site and efficiency of co-translational proteolytic processing by site-directed mutagenesis of human pre(delta pro)apolipoprotein A-II. Nothwehr SF; Gordon JI J Biol Chem; 1989 Mar; 264(7):3979-87. PubMed ID: 2537299 [TBL] [Abstract][Full Text] [Related]
14. Proteolytic processing of the primary translation product of rat intestinal apolipoprotein A-IV mRNA. Comparison with preproapolipoprotein A-I processing. Gordon JI; Smith DP; Alpers DH; Strauss AW J Biol Chem; 1982 Jul; 257(14):8418-23. PubMed ID: 7085674 [TBL] [Abstract][Full Text] [Related]
15. Parallel effects of signal peptide hydrophobic core modifications on co-translational translocation and post-translational cleavage by purified signal peptidase. Cioffi JA; Allen KL; Lively MO; Kemper B J Biol Chem; 1989 Sep; 264(25):15052-8. PubMed ID: 2549048 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of precursor maltose-binding protein with proline in the +1 position of the cleavage site interferes with the activity of Escherichia coli signal peptidase I in vivo. Barkocy-Gallagher GA; Bassford PJ J Biol Chem; 1992 Jan; 267(2):1231-8. PubMed ID: 1730647 [TBL] [Abstract][Full Text] [Related]
17. Mutations in the NH2-terminal domain of the signal peptide of preproparathyroid hormone inhibit translocation without affecting interaction with signal recognition particle. Szczesna-Skorupa E; Mead DA; Kemper B J Biol Chem; 1987 Jun; 262(18):8896-900. PubMed ID: 3036835 [TBL] [Abstract][Full Text] [Related]
18. Maturation of Escherichia coli maltose-binding protein by signal peptidase I in vivo. Sequence requirements for efficient processing and demonstration of an alternate cleavage site. Fikes JD; Barkocy-Gallagher GA; Klapper DG; Bassford PJ J Biol Chem; 1990 Feb; 265(6):3417-23. PubMed ID: 2406254 [TBL] [Abstract][Full Text] [Related]
19. A deletion that includes the signal peptidase cleavage site impairs processing, glycosylation, and secretion of cell surface yeast acid phosphatase. Haguenauer-Tsapis R; Hinnen A Mol Cell Biol; 1984 Dec; 4(12):2668-75. PubMed ID: 6098819 [TBL] [Abstract][Full Text] [Related]
20. Inefficient membrane targeting, translocation, and proteolytic processing by signal peptidase of a mutant preproparathyroid hormone protein. Karaplis AC; Lim SK; Baba H; Arnold A; Kronenberg HM J Biol Chem; 1995 Jan; 270(4):1629-35. PubMed ID: 7829495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]