BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35339426)

  • 1. Insights of conformational dynamics on catalytic activity in the computational stability design of Bacillus subtilis LipA.
    Dong F; Zhang M; Ma R; Lu C; Xu F
    Arch Biochem Biophys; 2022 Jun; 722():109196. PubMed ID: 35339426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing dynamics correlation network to simultaneously improve activity and stability of 2,3-butanediol dehydrogenase by design of distal interchain disulfide bonds.
    Pu Z; Cao J; Wu W; Song Z; Yang L; Wu J; Yu H
    Int J Biol Macromol; 2024 May; 267(Pt 2):131415. PubMed ID: 38582485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Improving the thermal stability of Bacillus subtilis lipase based on multiple computational design strategies].
    Xiang Y; Zhang M; Xu F
    Sheng Wu Gong Cheng Xue Bao; 2020 Aug; 36(8):1556-1567. PubMed ID: 32924354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A.
    Tian F; Yang C; Wang C; Guo T; Zhou P
    J Mol Model; 2014 Jun; 20(6):2257. PubMed ID: 24827611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations.
    Singh B; Bulusu G; Mitra A
    J Phys Chem B; 2015 Jan; 119(2):392-409. PubMed ID: 25495458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploiting correlated molecular-dynamics networks to counteract enzyme activity-stability trade-off.
    Yu H; Dalby PA
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):E12192-E12200. PubMed ID: 30530661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures.
    Kumar V; Yedavalli P; Gupta V; Rao NM
    Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipase A from
    Behera S; Balasubramanian S
    J Chem Inf Model; 2023 Dec; 63(23):7545-7556. PubMed ID: 37989487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion and Randomization of Structurally Variable Regions in
    Martínez R; Bernal C; Álvarez R; Concha C; Araya F; Cabrera R; Dhoke GV; Davari MD
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions.
    Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    J Biotechnol; 2013 Mar; 164(1):59-66. PubMed ID: 23262127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity.
    Singh B; Bulusu G; Mitra A
    J Comput Aided Mol Des; 2016 Oct; 30(10):899-916. PubMed ID: 27696241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation analysis of a surface loop that controls active site access in the GH11 xylanase A from Bacillus subtilis.
    Vieira DS; Ward RJ
    J Mol Model; 2012 Apr; 18(4):1473-9. PubMed ID: 21785938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of mutations to amino acid A301 and F361 in thermostability and catalytic activity of the β-galactosidase from Bacillus subtilis VTCC-DVN-12-01.
    Nguyen TT; Vu HV; Nguyen NT; Do TT; Nguyen TS
    BMC Biochem; 2016 Jul; 17(1):15. PubMed ID: 27393145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sampling the conformational energy landscape of a hyperthermophilic protein by engineering key substitutions.
    Colletier JP; Aleksandrov A; Coquelle N; Mraihi S; Mendoza-Barberá E; Field M; Madern D
    Mol Biol Evol; 2012 Jun; 29(6):1683-94. PubMed ID: 22319152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant.
    Kamal MZ; Mohammad TA; Krishnamoorthy G; Rao NM
    PLoS One; 2012; 7(4):e35188. PubMed ID: 22514720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design of Thermostable Carbonic Anhydrase Mutants Using Molecular Dynamics Simulations.
    Parra-Cruz R; Jäger CM; Lau PL; Gomes RL; Pordea A
    J Phys Chem B; 2018 Sep; 122(36):8526-8536. PubMed ID: 30114369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays.
    Sutthibutpong T; Rattanarojpong T; Khunrae P
    J Biomol Struct Dyn; 2018 Nov; 36(15):3978-3992. PubMed ID: 29129140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loops around the Heme Pocket Have a Critical Role in the Function and Stability of
    Rodrigues CF; Borges PT; Scocozza MF; Silva D; Taborda A; Brissos V; Frazão C; Martins LO
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639208
    [No Abstract]   [Full Text] [Related]  

  • 20. Directed evolution to improve the catalytic efficiency of urate oxidase from Bacillus subtilis.
    Li W; Xu S; Zhang B; Zhu Y; Hua Y; Kong X; Sun L; Hong J
    PLoS One; 2017; 12(5):e0177877. PubMed ID: 28531234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.