BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35339426)

  • 21. Contribution of single amino acid and codon substitutions to the production and secretion of a lipase by Bacillus subtilis.
    Skoczinski P; Volkenborn K; Fulton A; Bhadauriya A; Nutschel C; Gohlke H; Knapp A; Jaeger KE
    Microb Cell Fact; 2017 Sep; 16(1):160. PubMed ID: 28946879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Counteraction of stability-activity trade-off of Nattokinase through flexible region shifting.
    Luo J; Song C; Cui W; Han L; Zhou Z
    Food Chem; 2023 Oct; 423():136241. PubMed ID: 37178594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermostabilization of Bacillus subtilis GH11 xylanase by surface charge engineering.
    Alponti JS; Fonseca Maldonado R; Ward RJ
    Int J Biol Macromol; 2016 Jun; 87():522-8. PubMed ID: 26955749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.
    Ishida T
    J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning and expression of a β-mannanase gene from Bacillus sp. MK-2 and its directed evolution by random mutagenesis.
    Zhang W; Liu Z; Zhou S; Mou H; Zhang R
    Enzyme Microb Technol; 2019 May; 124():70-78. PubMed ID: 30797481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: factors contributing to increased activity retention.
    Augustyniak W; Brzezinska AA; Pijning T; Wienk H; Boelens R; Dijkstra BW; Reetz MT
    Protein Sci; 2012 Apr; 21(4):487-97. PubMed ID: 22267088
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermostabilization of Bacillus subtilis lipase A by minimizing the structural deformation caused by packing enhancement.
    Yun HS; Park HJ; Joo JC; Yoo YJ
    J Ind Microbiol Biotechnol; 2013 Nov; 40(11):1223-9. PubMed ID: 24005991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a hexameric exo-acting GH51 α-l-arabinofuranosidase from the mesophilic Bacillus subtilis.
    Hoffmam ZB; Oliveira LC; Cota J; Alvarez TM; Diogo JA; Neto Mde O; Citadini AP; Leite VB; Squina FM; Murakami MT; Ruller R
    Mol Biotechnol; 2013 Nov; 55(3):260-7. PubMed ID: 23797805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing the catalytic activity of a GH5 processive endoglucanase from Bacillus subtilis BS-5 by site-directed mutagenesis.
    Lv K; Shao W; Pedroso MM; Peng J; Wu B; Li J; He B; Schenk G
    Int J Biol Macromol; 2021 Jan; 168():442-452. PubMed ID: 33310097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions.
    Kübler D; Ingenbosch KN; Bergmann A; Weidmann M; Hoffmann-Jacobsen K
    Eur Biophys J; 2015 Dec; 44(8):655-65. PubMed ID: 26224303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semirational Design Based on Consensus Sequences to Balance the Enzyme Activity-Stability Trade-Off.
    Zhao Y; Chen K; Yang H; Wang Y; Liao X
    J Agric Food Chem; 2024 Mar; 72(12):6454-6462. PubMed ID: 38477968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Just an additional hydrogen bond can dramatically reduce the catalytic activity of Bacillus subtilis lipase A I12T mutant: an integration of computational modeling and experimental analysis.
    Ni Z; Jin R; Chen H; Lin X
    Comput Biol Med; 2013 Nov; 43(11):1882-8. PubMed ID: 24209933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermostability of in vitro evolved Bacillus subtilis lipase A: a network and dynamics perspective.
    Srivastava A; Sinha S
    PLoS One; 2014; 9(8):e102856. PubMed ID: 25122499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of Rigidity Theory to the Thermostabilization of Lipase A from Bacillus subtilis.
    Rathi PC; Fulton A; Jaeger KE; Gohlke H
    PLoS Comput Biol; 2016 Mar; 12(3):e1004754. PubMed ID: 27003415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering Clostridium absonum 7α-hydroxysteroid Dehydrogenase for Enhancing Thermostability Based on Flexible Site and ΔΔG Prediction.
    Lou D; Tan J; Zhu L; Ji S; Tang S; Yao K; Han J; Wang B
    Protein Pept Lett; 2018; 25(3):230-235. PubMed ID: 29141528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accurate Prediction of Enzyme Thermostabilization with Rosetta Using AlphaFold Ensembles.
    Peccati F; Alunno-Rufini S; Jiménez-Osés G
    J Chem Inf Model; 2023 Feb; 63(3):898-909. PubMed ID: 36647575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational design of new enzymes for hydrolysis and synthesis of third-generation cephalosporin antibiotics.
    Xue J; Wang P; Kuang J; Zhu Y
    Enzyme Microb Technol; 2020 Oct; 140():109649. PubMed ID: 32912699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational design-based molecular engineering of the glycosyl hydrolase family 11 B. subtilis XynA endoxylanase improves its acid stability.
    Beliën T; Joye IJ; Delcour JA; Courtin CM
    Protein Eng Des Sel; 2009 Oct; 22(10):587-96. PubMed ID: 19531602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations.
    Silva IR; Jers C; Otten H; Nyffenegger C; Larsen DM; Derkx PM; Meyer AS; Mikkelsen JD; Larsen S
    Appl Microbiol Biotechnol; 2014 May; 98(10):4521-31. PubMed ID: 24419797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of conformational dynamics in the evolution of novel enzyme function.
    Maria-Solano MA; Serrano-Hervás E; Romero-Rivera A; Iglesias-Fernández J; Osuna S
    Chem Commun (Camb); 2018 Jun; 54(50):6622-6634. PubMed ID: 29780987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.