These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35339426)

  • 41. Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico.
    Broom A; Rakotoharisoa RV; Thompson MC; Zarifi N; Nguyen E; Mukhametzhanov N; Liu L; Fraser JS; Chica RA
    Nat Commun; 2020 Sep; 11(1):4808. PubMed ID: 32968058
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improvement of the acid resistance, catalytic efficiency, and thermostability of nattokinase by multisite-directed mutagenesis.
    Liu Z; Zhao H; Han L; Cui W; Zhou L; Zhou Z
    Biotechnol Bioeng; 2019 Aug; 116(8):1833-1843. PubMed ID: 30934114
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Large-scale conformational dynamics of the HIV-1 integrase core domain and its catalytic loop mutants.
    Lee MC; Deng J; Briggs JM; Duan Y
    Biophys J; 2005 May; 88(5):3133-46. PubMed ID: 15731379
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering protonation conformation of l-aspartate-α-decarboxylase to relieve mechanism-based inactivation.
    Qian Y; Lu C; Liu J; Song W; Chen X; Luo Q; Liu L; Wu J
    Biotechnol Bioeng; 2020 Jun; 117(6):1607-1614. PubMed ID: 32096553
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular dynamics simulations for the ranking, evaluation, and refinement of computationally designed proteins.
    Kiss G; Pande VS; Houk KN
    Methods Enzymol; 2013; 523():145-70. PubMed ID: 23422429
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermostabilization of Bacillus circulans xylanase via computational design of a flexible surface cavity.
    Joo JC; Pohkrel S; Pack SP; Yoo YJ
    J Biotechnol; 2010 Mar; 146(1-2):31-9. PubMed ID: 20074594
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rational design of a thermophilic β-mannanase fromBacillus subtilis TJ-102 to improve its thermostability.
    Wang XC; You SP; Zhang JX; Dai YM; Zhang CY; Qi W; Dou TY; Su RX; He ZM
    Enzyme Microb Technol; 2018 Nov; 118():50-56. PubMed ID: 30143199
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improving the Thermostability of Xylanase A from
    Ngo K; Bruno da Silva F; Leite VBP; Contessoto VG; Onuchic JN
    J Phys Chem B; 2021 May; 125(17):4359-4367. PubMed ID: 33887137
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Relation Between Lipase Thermostability and Dynamics of Hydrogen Bond and Hydrogen Bond Network Based on Long Time Molecular Dynamics Simulation.
    Zhang L; Ding Y
    Protein Pept Lett; 2017; 24(7):643-648. PubMed ID: 28464764
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational engineering of cellulase Cel9A-68 functional motions through mutations in its linker region.
    Costa MGS; Silva YF; Batista PR
    Phys Chem Chem Phys; 2018 Mar; 20(11):7643-7652. PubMed ID: 29497721
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Designing a less immunogenic nattokinase from Bacillus subtilis subsp. natto: a computational mutagenesis.
    Vianney YM; Tjoa SEE; Aditama R; Dwi Putra SE
    J Mol Model; 2019 Nov; 25(11):337. PubMed ID: 31705312
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing thermostability of a psychrophilic alpha-amylase by the structural energy optimization in the trajectories of molecular dynamics simulations.
    Li Q; Yan Y; Liu X; Zhang Z; Tian J; Wu N
    Int J Biol Macromol; 2020 Jan; 142():624-633. PubMed ID: 31622706
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sequence- and structure-guided improvement of the catalytic performance of a GH11 family xylanase from Bacillus subtilis.
    Wang L; Cao K; Pedroso MM; Wu B; Gao Z; He B; Schenk G
    J Biol Chem; 2021 Nov; 297(5):101262. PubMed ID: 34600889
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The phage display of Bacillus subtilis Lipase A significantly enhances catalytic activity due to altered nanoscale distribution in colloidal solution.
    Nahar S; Sokullu E; Gauthier MA
    Biotechnol Bioeng; 2020 Mar; 117(3):868-872. PubMed ID: 31758554
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploration of key residues and conformational change of anti-terminator protein GlpP for ligand and RNA binding.
    Chen Q; Cui W; Zhou Z; Han L
    Proteins; 2021 Jun; 89(6):623-631. PubMed ID: 33455022
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of active designs of cephalosporin C acylase by molecular dynamics simulation and molecular docking.
    Li Q; Huang X; Zhu Y
    J Mol Model; 2014 Jul; 20(7):2314. PubMed ID: 24935111
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Introduction of a stabilizing 10 residue beta-hairpin in Bacillus subtilis neutral protease.
    Eijsink VG; Vriend G; van den Burg B; van der Zee JR; Veltman OR; Stulp BK; Venema G
    Protein Eng; 1992 Mar; 5(2):157-63. PubMed ID: 1594570
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural Dynamics of the
    Jelić Matošević Z; Radman K; Loubser J; Crnolatac I; Piantanida I; Cukrowski I; Ašler IL; Bertoša B
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Activity loss by H46A mutation in Mycobacterium tuberculosis isocitrate lyase is due to decrease in structural plasticity and collective motions of the active site.
    Shukla R; Shukla H; Tripathi T
    Tuberculosis (Edinb); 2018 Jan; 108():143-150. PubMed ID: 29523315
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surface charged amino acid-based strategy for rational engineering of kinetic stability and specific activity of enzymes: Linking experiments with computational modeling.
    Liu Z; Fu X; Yuan M; Liang Q; Zhu C; Mou H
    Int J Biol Macromol; 2021 Jul; 182():228-236. PubMed ID: 33831449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.