These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 35339866)
1. A baseline of copper associated with antifouling paint in marinas within a large fjord estuary. Hobbs WO; McCall M; Lanksbury J; Seiders K; Sandvik P; Jones M; Chuhran H; Momohara D; Norton D Mar Pollut Bull; 2022 May; 178():113547. PubMed ID: 35339866 [TBL] [Abstract][Full Text] [Related]
2. Survey of four marine antifoulant constituents (copper, zinc, diuron and Irgarol 1051) in two UK estuaries. Comber SD; Gardner MJ; Boxall AB J Environ Monit; 2002 Jun; 4(3):417-25. PubMed ID: 12094938 [TBL] [Abstract][Full Text] [Related]
3. Flawed risk assessment of antifouling paints leads to exceedance of guideline values in Baltic Sea marinas. Lagerström M; Ferreira J; Ytreberg E; Eriksson-Wiklund AK Environ Sci Pollut Res Int; 2020 Aug; 27(22):27674-27687. PubMed ID: 32394257 [TBL] [Abstract][Full Text] [Related]
4. Copper leaching from recreational vessel antifouling paints in freshwater: A Berlin case study. Schröder L; Hellweger F; Putschew A J Environ Manage; 2022 Jan; 301():113895. PubMed ID: 34634724 [TBL] [Abstract][Full Text] [Related]
5. Metal record of copper-based antifouling paints in sediment core following marina construction and operation. Cunha B; Garnier J; Araújo D; Tonhá M; Souto-Oliveira CE; Ruiz I; Feitas E Silva FH; Almeida T; Freydier R; Seyler P; Babinski M Mar Pollut Bull; 2024 Jul; 204():116534. PubMed ID: 38850759 [TBL] [Abstract][Full Text] [Related]
6. A novel XRF method to measure environmental release of copper and zinc from antifouling paints. Ytreberg E; Lagerström M; Holmqvist A; Eklund B; Elwing H; Dahlström M; Dahl P; Dahlström M Environ Pollut; 2017 Jun; 225():490-496. PubMed ID: 28341326 [TBL] [Abstract][Full Text] [Related]
7. Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper anti-fouling paints. Pelletier É; Bonnet C; Lemarchand K Int J Mol Sci; 2009 Jul; 10(7):3209-3223. PubMed ID: 19742133 [TBL] [Abstract][Full Text] [Related]
8. Antifouling paints leach copper in excess - study of metal release rates and efficacy along a salinity gradient. Lagerström M; Ytreberg E; Wiklund AE; Granhag L Water Res; 2020 Nov; 186():116383. PubMed ID: 32916622 [TBL] [Abstract][Full Text] [Related]
9. Cu isotope records of Cu-based antifouling paints in sediment core profiles from the largest European Marina, The Port Camargue. Briant N; Freydier R; Araújo DF; Delpoux S; Elbaz-Poulichet F Sci Total Environ; 2022 Nov; 849():157885. PubMed ID: 35944646 [TBL] [Abstract][Full Text] [Related]
10. Managing the use of copper-based antifouling paints. Srinivasan M; Swain GW Environ Manage; 2007 Mar; 39(3):423-41. PubMed ID: 17253094 [TBL] [Abstract][Full Text] [Related]
11. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities. Lagerström M; Lindgren JF; Holmqvist A; Dahlström M; Ytreberg E Mar Pollut Bull; 2018 Feb; 127():289-296. PubMed ID: 29475665 [TBL] [Abstract][Full Text] [Related]
12. Metal pollution affects both native and non-indigenous biofouling recruitment in a subtropical island system. Ramalhosa P; Gestoso I; Duarte B; Caçador I; Canning-Clode J Mar Pollut Bull; 2019 Apr; 141():373-386. PubMed ID: 30955747 [TBL] [Abstract][Full Text] [Related]
13. Impacts of boat paint chips on the distribution and availability of copper in an English ria. Turner A; Fitzer S; Glegg GA Environ Pollut; 2008 Jan; 151(1):176-81. PubMed ID: 17418467 [TBL] [Abstract][Full Text] [Related]
15. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats. Ytreberg E; Bighiu MA; Lundgren L; Eklund B Environ Pollut; 2016 Jun; 213():594-599. PubMed ID: 27016611 [TBL] [Abstract][Full Text] [Related]
16. Antifouling biocides in discarded marine paint particles. Parks R; Donnier-Marechal M; Frickers PE; Turner A; Readman JW Mar Pollut Bull; 2010 Aug; 60(8):1226-30. PubMed ID: 20381093 [TBL] [Abstract][Full Text] [Related]
17. An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints. Hall LW; Giddings JM; Solomon KR; Balcomb R Crit Rev Toxicol; 1999 Jul; 29(4):367-437. PubMed ID: 10451264 [TBL] [Abstract][Full Text] [Related]
18. Environmental pollution with antifouling paint particles: Distribution, ecotoxicology, and sustainable alternatives. Torres FG; De-la-Torre GE Mar Pollut Bull; 2021 Aug; 169():112529. PubMed ID: 34058498 [TBL] [Abstract][Full Text] [Related]
19. Biofouling of leisure boats as a source of metal pollution. Bighiu MA; Eriksson-Wiklund AK; Eklund B Environ Sci Pollut Res Int; 2017 Jan; 24(1):997-1006. PubMed ID: 27766522 [TBL] [Abstract][Full Text] [Related]
20. Rapid increase in copper concentrations in a new marina, San Diego Bay. Biggs TW; D'Anna H Mar Pollut Bull; 2012 Mar; 64(3):627-35. PubMed ID: 22245437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]