These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35339959)

  • 81. Catalytic performance and mechanism of bismuth molybdate nanosheets decorated with platinum nanoparticles for formaldehyde decomposition at room temperature.
    Qin L; Huang S; Cheng H
    J Colloid Interface Sci; 2023 Mar; 633():453-467. PubMed ID: 36462268
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Preparation of Mn-Fe Oxide by a Hydrolysis-Driven Redox Method and Its Application in Formaldehyde Oxidation.
    Ling J; Dong Y; Cao P; Wang Y; Li Y
    ACS Omega; 2021 Sep; 6(36):23274-23280. PubMed ID: 34549127
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Engineering Manganese Defects in Mn
    He T; Zhou Y; Ding D; Rong S
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):29664-29675. PubMed ID: 34142801
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Single Mn atom modulated molecular oxygen activation over TiO
    Liu X; Ling C; Chen X; Gu H; Zhan G; Liang C; Wei K; Wu X; Wang K; Wang G
    J Colloid Interface Sci; 2024 Jul; 666():12-21. PubMed ID: 38582040
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Understanding A-site tuning effect on formaldehyde catalytic oxidation over La-Mn perovskite catalysts.
    Ding J; Liu J; Yang Y; Zhao L; Yu Y
    J Hazard Mater; 2022 Jan; 422():126931. PubMed ID: 34425429
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Antimonate Controls Manganese(II)-Induced Transformation of Birnessite at a Circumneutral pH.
    Karimian N; Hockmann K; Planer-Friedrich B; Johnston SG; Burton ED
    Environ Sci Technol; 2021 Jul; 55(14):9854-9863. PubMed ID: 34228928
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Photochemical Formation and Transformation of Birnessite: Effects of Cations on Micromorphology and Crystal Structure.
    Zhang T; Liu L; Tan W; Suib SL; Qiu G; Liu F
    Environ Sci Technol; 2018 Jun; 52(12):6864-6871. PubMed ID: 29792324
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Remarkable MnO
    Ma C; Sun S; Lu H; Hao Z; Yang C; Wang B; Chen C; Song M
    J Hazard Mater; 2021 Jul; 414():125542. PubMed ID: 33667806
    [TBL] [Abstract][Full Text] [Related]  

  • 89. In Situ Intermediates Determination and Cytotoxicological Assessment in Catalytic Oxidation of Formaldehyde: Implications for Catalyst Design and Selectivity Enhancement under Ambient Conditions.
    Li H; Cui L; Lu Y; Huang Y; Cao J; Park D; Lee SC; Ho W
    Environ Sci Technol; 2019 May; 53(9):5230-5240. PubMed ID: 30990308
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Copper-Intercalated Birnessite as a Water Oxidation Catalyst.
    Thenuwara AC; Shumlas SL; Attanayake NH; Cerkez EB; McKendry IG; Frazer L; Borguet E; Kang Q; Zdilla MJ; Sun J; Strongin DR
    Langmuir; 2015 Nov; 31(46):12807-13. PubMed ID: 26477450
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Converting formaldehyde in methanol with MoO
    Deng B; Chen Z; Yang L; Guo J; Cheng C; Li X; Zhang S; Luo S
    J Hazard Mater; 2024 Mar; 466():133606. PubMed ID: 38286048
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Investigation into the Phase-Activity Relationship of MnO
    Yang R; Guo Z; Cai L; Zhu R; Fan Y; Zhang Y; Han P; Zhang W; Zhu X; Zhao Q; Zhu Z; Chan CK; Zeng Z
    Small; 2021 Dec; 17(50):e2103052. PubMed ID: 34719844
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 94. High-efficient capture and degradation of formaldehyde based on the electric-field-enhanced catalytic effect.
    Lu YG; Zhao WK; Fang C; Zheng JY; Sun BC; Zhang T; Han CB
    J Hazard Mater; 2023 Aug; 455():131515. PubMed ID: 37167871
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Ag
    Rao X; Dou H; Long D; Zhang Y
    Chemosphere; 2020 Apr; 244():125462. PubMed ID: 31790992
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Lewis base sites of non-oxide supports boost oxygen absorption and activation over supported Pt catalysts.
    Liu J; Chen W; He T; Fang Y; Zhong Z; Wang X; Li Z; Song Y
    RSC Adv; 2022 Apr; 12(20):12537-12543. PubMed ID: 35480376
    [TBL] [Abstract][Full Text] [Related]  

  • 97. High-surface area mesoporous Pt/TiO₂ hollow chains for efficient formaldehyde decomposition at ambient temperature.
    Qi L; Cheng B; Yu J; Ho W
    J Hazard Mater; 2016 Jan; 301():522-30. PubMed ID: 26414928
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry.
    Zhao H; Zhu M; Li W; Elzinga EJ; Villalobos M; Liu F; Zhang J; Feng X; Sparks DL
    Environ Sci Technol; 2016 Feb; 50(4):1750-8. PubMed ID: 26745815
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Reaction of aqueous Cu-Citrate with MnO2 birnessite: characterization of Mn dissolution, oxidation products and surface interactions.
    Jefferson WA; Hu C; Liu H; Qu J
    Chemosphere; 2015 Jan; 119():1-7. PubMed ID: 25460741
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Oxidative removal of sulfadiazine using synthetic and natural manganese dioxides.
    Septian A; Shin WS
    Environ Technol; 2021 Jun; 42(14):2254-2266. PubMed ID: 31791202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.