These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35339968)

  • 1. Metabonomic and transcriptomic modulations of HepG2 cells induced by the CuO-catalyzed formation of disinfection byproducts from biofilm extracellular polymeric substances in copper pipes.
    Hu J; Qu J; Deng L; Dong H; Jiang L; Yu J; Yue S; Qian H; Dai Q; Qiang Z
    Water Res; 2022 Jun; 216():118318. PubMed ID: 35339968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced formation of carbonaceous and nitrogenous disinfection byproducts from biofilm extracellular polymeric substances undercatalysis of copper corrosion products.
    Hu J; Wang C; Shao B; Fu L; Yu J; Qiang Z; Chen J
    Sci Total Environ; 2020 Jun; 723():138160. PubMed ID: 32224409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of carbonaceous and nitrogenous iodinated disinfection byproducts from biofilm extracellular polymeric substances by the oxidation of iodide-containing waters with lead dioxide.
    Hu J; Xu Y; Chen Y; Chen J; Dong H; Yu J; Qiang Z; Qu J; Chen J
    Water Res; 2021 Jan; 188():116551. PubMed ID: 33128980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced formation of bromate and brominated disinfection byproducts during chlorination of bromide-containing waters under catalysis of copper corrosion products.
    Hu J; Qiang Z; Dong H; Qu J
    Water Res; 2016 Jul; 98():302-8. PubMed ID: 27110886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disinfection byproducts and halogen-specific total organic halogen speciation in chlorinated source waters - The impact of iopamidol and bromide.
    Ackerson NOB; Liberatore HK; Plewa MJ; Richardson SD; Ternes TA; Duirk SE
    J Environ Sci (China); 2020 Mar; 89():90-101. PubMed ID: 31892405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unexpected weakened formation of disinfection byproducts and enhanced production of halates by cupric oxide during chlorination of peptide-bound aspartic acid.
    Zhao G; Qiao M; Cheng H; Xu D; Liu X; Hu J; Qiang Z; Wu D; Chen Q
    J Hazard Mater; 2024 Aug; 474():134766. PubMed ID: 38833955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodinated disinfection byproduct formation in a MnO
    Fu L; Wu X; Zhu Y; Yao L; Wu C; Cheng H; Xu Y; Hu J; Gao W
    Chemosphere; 2021 Oct; 280():130643. PubMed ID: 33971409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of changes in biofilm composition response following chlorine and chloramine disinfection on nitrogenous disinfection byproduct formation and toxicity risk in drinking water distribution systems.
    Zheng S; Lin T; Chen H; Zhang X; Jiang F
    Water Res; 2024 Apr; 253():121331. PubMed ID: 38377929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of metal oxides on oxidant decay and disinfection byproduct formation in drinking waters: Relevance to distribution systems.
    Liu C
    J Environ Sci (China); 2021 Dec; 110():140-149. PubMed ID: 34593185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of chlorinated algal-impacted waters: Formation of disinfection byproducts vs. reduction of cyanotoxins.
    Liu C; Ersan MS; Wagner E; Plewa MJ; Amy G; Karanfil T
    Water Res; 2020 Oct; 184():116145. PubMed ID: 32771689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 17β-estradiol as precursors of Cl/Br-DBPs in the disinfection process of different water samples.
    Shao Y; Pan Z; Rong C; Wang Y; Zhu H; Zhang Y; Yu K
    Environ Pollut; 2018 Oct; 241():9-18. PubMed ID: 29793109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.
    Farré MJ; Day S; Neale PA; Stalter D; Tang JY; Escher BI
    Water Res; 2013 Sep; 47(14):5409-21. PubMed ID: 23866154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential Halogenation of Algal Organic Matter by Iodine over Chlorine and Bromine: Formation of Disinfection Byproducts and Correlation with Toxicity of Disinfected Waters.
    Liu C; Shin YH; Wei X; Ersan MS; Wagner E; Plewa MJ; Amy G; Karanfil T
    Environ Sci Technol; 2022 Jan; 56(2):1244-1256. PubMed ID: 34962797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Halogen substitution reactions of halobenzenes during water disinfection.
    Detenchuk EA; Mazur DM; Latkin TB; Lebedev AT
    Chemosphere; 2022 May; 295():133866. PubMed ID: 35134400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pipe materials on the characteristic recognition, disinfection byproduct formation, and toxicity risk of pipe wall biofilms during chlorination in water supply pipelines.
    Yan X; Lin T; Wang X; Zhang S; Zhou K
    Water Res; 2022 Feb; 210():117980. PubMed ID: 34974347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.
    Tan J; Allard S; Gruchlik Y; McDonald S; Joll CA; Heitz A
    Sci Total Environ; 2016 Jan; 541():1572-1580. PubMed ID: 26490534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the formation of TOCl, TOBr and TOI during chlor(am)ination of drinking water.
    Zhu X; Zhang X
    Water Res; 2016 Jun; 96():166-76. PubMed ID: 27038586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Much of the Total Organic Halogen and Developmental Toxicity of Chlorinated Drinking Water Might Be Attributed to Aromatic Halogenated DBPs?
    Han J; Zhang X; Jiang J; Li W
    Environ Sci Technol; 2021 May; 55(9):5906-5916. PubMed ID: 33830743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Brominated Disinfection Byproducts Formed During the Chlorination of Aquaculture Seawater.
    Wang J; Hao Z; Shi F; Yin Y; Cao D; Yao Z; Liu J
    Environ Sci Technol; 2018 May; 52(10):5662-5670. PubMed ID: 29701972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining high resolution mass spectrometry with a halogen extraction code to characterize and identify brominated disinfection byproducts formed during ozonation.
    Lu Y; Song ZM; Wang C; Liang JK; Hu Q; Wu QY
    Sci Total Environ; 2021 Nov; 796():149016. PubMed ID: 34280624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.