These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 35340039)
1. Cellular heterogeneity and transcriptomic profiles during intrahepatic cholangiocarcinoma initiation and progression. Wang T; Xu C; Zhang Z; Wu H; Li X; Zhang Y; Deng N; Dang N; Tang G; Yang X; Shi B; Li Z; Li L; Ye K Hepatology; 2022 Nov; 76(5):1302-1317. PubMed ID: 35340039 [TBL] [Abstract][Full Text] [Related]
2. YBX1 promotes stemness and cisplatin insensitivity in intrahepatic cholangiocarcinoma via the AKT/β-catenin axis. Shi X; Hu Z; Bai S; Zong C; Xue H; Li Y; Li F; Chen L; Xuan J; Xia Y; Wei L; Shen F; Wang K J Gene Med; 2024 May; 26(5):e3689. PubMed ID: 38676365 [TBL] [Abstract][Full Text] [Related]
4. NOTCH-YAP1/TEAD-DNMT1 Axis Drives Hepatocyte Reprogramming Into Intrahepatic Cholangiocarcinoma. Hu S; Molina L; Tao J; Liu S; Hassan M; Singh S; Poddar M; Bell A; Sia D; Oertel M; Raeman R; Nejak-Bowen K; Singhi A; Luo J; Monga SP; Ko S Gastroenterology; 2022 Aug; 163(2):449-465. PubMed ID: 35550144 [TBL] [Abstract][Full Text] [Related]
5. YTHDF1 promotes intrahepatic cholangiocarcinoma progression via regulating EGFR mRNA translation. Huang X; Zhu L; Wang L; Huang W; Tan L; Liu H; Huo J; Su T; Zhang M; Kuang M; Li X; Dai Z; Xu L J Gastroenterol Hepatol; 2022 Jun; 37(6):1156-1168. PubMed ID: 35233828 [TBL] [Abstract][Full Text] [Related]
6. Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. Zhang M; Yang H; Wan L; Wang Z; Wang H; Ge C; Liu Y; Hao Y; Zhang D; Shi G; Gong Y; Ni Y; Wang C; Zhang Y; Xi J; Wang S; Shi L; Zhang L; Yue W; Pei X; Liu B; Yan X J Hepatol; 2020 Nov; 73(5):1118-1130. PubMed ID: 32505533 [TBL] [Abstract][Full Text] [Related]
7. Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice. Wang J; Dong M; Xu Z; Song X; Zhang S; Qiao Y; Che L; Gordan J; Hu K; Liu Y; Calvisi DF; Chen X Oncogene; 2018 Jun; 37(24):3229-3242. PubMed ID: 29545603 [TBL] [Abstract][Full Text] [Related]
8. Correlation between KRAS gene mutations and linicopathological features of patients with intrahepatic cholangiocarcinoma. Wang J; Xu MX; Wang LQ; Li HY; Wang ZL; Li LJ J Biol Regul Homeost Agents; 2019; 33(5):1551-1557. PubMed ID: 31635679 [No Abstract] [Full Text] [Related]
9. Autocrine parathyroid hormone-like hormone promotes intrahepatic cholangiocarcinoma cell proliferation via increased ERK/JNK-ATF2-cyclinD1 signaling. Tang J; Liao Y; He S; Shi J; Peng L; Xu X; Xie F; Diao N; Huang J; Xie Q; Lin C; Luo X; Liao K; Ma J; Li J; Zhou D; Li Z; Xu J; Zhong C; Wang G; Bai L J Transl Med; 2017 Nov; 15(1):238. PubMed ID: 29178939 [TBL] [Abstract][Full Text] [Related]
11. Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. Chen Q; Wang H; Li Z; Li F; Liang L; Zou Y; Shen H; Li J; Xia Y; Cheng Z; Yang T; Wang K; Shen F J Hepatol; 2022 Jan; 76(1):135-147. PubMed ID: 34509526 [TBL] [Abstract][Full Text] [Related]
12. Downregulation of MGMT promotes proliferation of intrahepatic cholangiocarcinoma by regulating p21. Chen J; Li Z; Chen J; Du Y; Song W; Xuan Z; Zhao L; Song G; Song P; Zheng S Clin Transl Oncol; 2020 Mar; 22(3):392-400. PubMed ID: 31264147 [TBL] [Abstract][Full Text] [Related]
13. Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice. Zhang S; Song X; Cao D; Xu Z; Fan B; Che L; Hu J; Chen B; Dong M; Pilo MG; Cigliano A; Evert K; Ribback S; Dombrowski F; Pascale RM; Cossu A; Vidili G; Porcu A; Simile MM; Pes GM; Giannelli G; Gordan J; Wei L; Evert M; Cong W; Calvisi DF; Chen X J Hepatol; 2017 Dec; 67(6):1194-1203. PubMed ID: 28733220 [TBL] [Abstract][Full Text] [Related]
14. Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma. Dong LQ; Shi Y; Ma LJ; Yang LX; Wang XY; Zhang S; Wang ZC; Duan M; Zhang Z; Liu LZ; Zheng BH; Ding ZB; Ke AW; Gao DM; Yuan K; Zhou J; Fan J; Xi R; Gao Q J Hepatol; 2018 Jul; 69(1):89-98. PubMed ID: 29551704 [TBL] [Abstract][Full Text] [Related]
15. A mouse model of cholestasis-associated cholangiocarcinoma and transcription factors involved in progression. Yang H; Li TW; Peng J; Tang X; Ko KS; Xia M; Aller MA Gastroenterology; 2011 Jul; 141(1):378-88, 388.e1-4. PubMed ID: 21440549 [TBL] [Abstract][Full Text] [Related]
16. COUP-TFII promotes metastasis and epithelial-to-mesenchymal transition through upregulating Snail in human intrahepatic cholangiocarcinoma. Lang Q; Xiao P; Zhao M; Liang D; Meng Q; Pei T Acta Biochim Biophys Sin (Shanghai); 2020 Dec; 52(11):1247-1256. PubMed ID: 33166992 [TBL] [Abstract][Full Text] [Related]
17. CAFs shape myeloid-derived suppressor cells to promote stemness of intrahepatic cholangiocarcinoma through 5-lipoxygenase. Lin Y; Cai Q; Chen Y; Shi T; Liu W; Mao L; Deng B; Ying Z; Gao Y; Luo H; Yang X; Huang X; Shi Y; He R Hepatology; 2022 Jan; 75(1):28-42. PubMed ID: 34387870 [TBL] [Abstract][Full Text] [Related]
19. m6A RNA methylation-mediated upregulation of HLF promotes intrahepatic cholangiocarcinoma progression by regulating the FZD4/β-catenin signaling pathway. Xiang D; Gu M; Liu J; Dong W; Yang Z; Wang K; Fu J; Wang H Cancer Lett; 2023 Apr; 560():216144. PubMed ID: 36958694 [TBL] [Abstract][Full Text] [Related]
20. Protein expression and genetic alterations of p53 and ras in intrahepatic cholangiocarcinoma. Furubo S; Harada K; Shimonishi T; Katayanagi K; Tsui W; Nakanuma Y Histopathology; 1999 Sep; 35(3):230-40. PubMed ID: 10469215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]