These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

758 related articles for article (PubMed ID: 35340172)

  • 1. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics].
    Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L
    Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172
    [No Abstract]   [Full Text] [Related]  

  • 2. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X
    Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Short-term outcome of programmed cell death protein1 (PD-1) antibody combined with total neoadjuvant chemoradiotherapy in the treatment of locally advanced middle-low rectal cancer with high risk factors].
    Li YJ; Zhang L; Dong QS; Cai Y; Zhang YZ; Wang L; Yao YF; Zhang XY; Li ZW; Li YH; Sun YS; Wang WH; Wu AW
    Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Nov; 24(11):998-1007. PubMed ID: 34823301
    [No Abstract]   [Full Text] [Related]  

  • 4. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H
    Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prognostic prediction value of the clinical-radiomics tumour-stroma ratio in locally advanced rectal cancer.
    Cai C; Hu T; Rong Z; Gong J; Tong T
    Eur J Radiol; 2024 Jan; 170():111254. PubMed ID: 38091662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer.
    Li Y; Liu W; Pei Q; Zhao L; Güngör C; Zhu H; Song X; Li C; Zhou Z; Xu Y; Wang D; Tan F; Yang P; Pei H
    Cancer Med; 2019 Dec; 8(17):7244-7252. PubMed ID: 31642204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer.
    Li ZY; Wang XD; Li M; Liu XJ; Ye Z; Song B; Yuan F; Yuan Y; Xia CC; Zhang X; Li Q
    World J Gastroenterol; 2020 May; 26(19):2388-2402. PubMed ID: 32476800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer].
    Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B
    Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826
    [No Abstract]   [Full Text] [Related]  

  • 9. Does restaging MRI radiomics analysis improve pathological complete response prediction in rectal cancer patients? A prognostic model development.
    Chiloiro G; Cusumano D; de Franco P; Lenkowicz J; Boldrini L; Carano D; Barbaro B; Corvari B; Dinapoli N; Giraffa M; Meldolesi E; Manfredi R; Valentini V; Gambacorta MA
    Radiol Med; 2022 Jan; 127(1):11-20. PubMed ID: 34725772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing a prediction model based on MRI for pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Zhang C; Zhao Q; Meng Y; Zou S; Yang Y; Liu Y; Jiang J; Ye F; Ouyang H; Zhao X; Zhang H
    Abdom Radiol (NY); 2019 Sep; 44(9):2978-2987. PubMed ID: 31327039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging radiomics-based prediction of severe inflammatory response in locally advanced rectal cancer patients after neoadjuvant radiochemotherapy.
    Chen L; Zhu W; Zhang W; Chen E; Zhou W
    Langenbecks Arch Surg; 2024 Jul; 409(1):218. PubMed ID: 39017754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study.
    Feng L; Liu Z; Li C; Li Z; Lou X; Shao L; Wang Y; Huang Y; Chen H; Pang X; Liu S; He F; Zheng J; Meng X; Xie P; Yang G; Ding Y; Wei M; Yun J; Hung MC; Zhou W; Wahl DR; Lan P; Tian J; Wan X
    Lancet Digit Health; 2022 Jan; 4(1):e8-e17. PubMed ID: 34952679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics.
    El Homsi M; Bane O; Fauveau V; Hectors S; Vietti Violi N; Sylla P; Ko HB; Cuevas J; Carbonell G; Nehlsen A; Vanguri R; Viswanath S; Jambawalikar S; Shaish H; Taouli B
    Abdom Radiol (NY); 2024 Mar; 49(3):791-800. PubMed ID: 38150143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRI radiomics signature to predict lymph node metastasis after neoadjuvant chemoradiation therapy in locally advanced rectal cancer.
    Fang Z; Pu H; Chen XL; Yuan Y; Zhang F; Li H
    Abdom Radiol (NY); 2023 Jul; 48(7):2270-2283. PubMed ID: 37085730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images.
    Lee YD; Kim HG; Seo M; Moon SK; Park SJ; You MW
    Int J Colorectal Dis; 2024 May; 39(1):78. PubMed ID: 38789861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Develop and validate a radiomics space-time model to predict the pathological complete response in patients undergoing neoadjuvant treatment of rectal cancer: an artificial intelligence model study based on machine learning.
    Peng J; Wang W; Jin H; Qin X; Hou J; Yang Z; Shu Z
    BMC Cancer; 2023 Apr; 23(1):365. PubMed ID: 37085830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics of MRI for pretreatment prediction of pathologic complete response, tumor regression grade, and neoadjuvant rectal score in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiation: an international multicenter study.
    Shaish H; Aukerman A; Vanguri R; Spinelli A; Armenta P; Jambawalikar S; Makkar J; Bentley-Hibbert S; Del Portillo A; Kiran R; Monti L; Bonifacio C; Kirienko M; Gardner KL; Schwartz L; Keller D
    Eur Radiol; 2020 Nov; 30(11):6263-6273. PubMed ID: 32500192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI Radiomics Model Predicts Pathologic Complete Response of Rectal Cancer Following Chemoradiotherapy.
    Shin J; Seo N; Baek SE; Son NH; Lim JS; Kim NK; Koom WS; Kim S
    Radiology; 2022 May; 303(2):351-358. PubMed ID: 35133200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The value of MR T2WI signal intensity related parameters for predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer].
    Wan LJ; Zhang CD; Zhang HM; Meng YK; Ye F; Liu Y; Zhao XM; Zhou CW
    Zhonghua Zhong Liu Za Zhi; 2019 Nov; 41(11):837-843. PubMed ID: 31770851
    [No Abstract]   [Full Text] [Related]  

  • 20. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models.
    Li Z; Ma X; Shen F; Lu H; Xia Y; Lu J
    BMC Med Imaging; 2021 Feb; 21(1):30. PubMed ID: 33593304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.