These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35340403)

  • 21. Accuracy Assessment of Oura Ring Nocturnal Heart Rate and Heart Rate Variability in Comparison With Electrocardiography in Time and Frequency Domains: Comprehensive Analysis.
    Cao R; Azimi I; Sarhaddi F; Niela-Vilen H; Axelin A; Liljeberg P; Rahmani AM
    J Med Internet Res; 2022 Jan; 24(1):e27487. PubMed ID: 35040799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Can PPG be used for HRV analysis?
    Pinheiro N; Couceiro R; Henriques J; Muehlsteff J; Quintal I; Goncalves L; Carvalho P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2945-2949. PubMed ID: 28268930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review.
    Georgiou K; Larentzakis AV; Khamis NN; Alsuhaibani GI; Alaska YA; Giallafos EJ
    Folia Med (Plovdiv); 2018 Mar; 60(1):7-20. PubMed ID: 29668452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Information Retrieval from Photoplethysmographic Sensors: A Comprehensive Comparison of Practical Interpolation and Breath-Extraction Techniques at Different Sampling Rates.
    Reali P; Lolatto R; Coelli S; Tartaglia G; Bianchi AM
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214329
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of time-domain indices, frequency domain measures of heart rate variability derived from ECG waveform and pulse-wave-related HRV among overweight individuals: an observational study.
    Kumar SM; Vaishali K; Maiya GA; Shivashankar KN; Shashikiran U
    F1000Res; 2023; 12():1229. PubMed ID: 37799491
    [No Abstract]   [Full Text] [Related]  

  • 26. Analysis of a Pulse Rate Variability Measurement Using a Smartphone Camera.
    Bánhalmi A; Borbás J; Fidrich M; Bilicki V; Gingl Z; Rudas L
    J Healthc Eng; 2018; 2018():4038034. PubMed ID: 29666670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multimodal Assessment of the Pulse Rate Variability Analysis Module of a Photoplethysmography-Based Telemedicine System.
    Antali F; Kulin D; Lucz KI; Szabó B; Szűcs L; Kulin S; Miklós Z
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A quality metric for heart rate variability from photoplethysmogram sensor data.
    Zanon M; Kriara L; Lipsmeier F; Nobbs D; Chatham C; Hipp J; Lindemann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():706-709. PubMed ID: 33018085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects.
    Lu G; Yang F; Taylor JA; Stein JF
    J Med Eng Technol; 2009; 33(8):634-41. PubMed ID: 19848857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heart rate variability (HRV) in deep breathing tests and 5-min short-term recordings: agreement of ear photoplethysmography with ECG measurements, in 343 subjects.
    Weinschenk SW; Beise RD; Lorenz J
    Eur J Appl Physiol; 2016 Aug; 116(8):1527-35. PubMed ID: 27278521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Analysis of Pulse Rate Variability and Its Application to Wearable Smart Devices].
    Shi B; Chen F; Chen J; Tsau Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2015 Mar; 39(2):95-7. PubMed ID: 26204736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contactless Heart Rate Variability (HRV) Estimation Using a Smartphone During Respiratory Maneuvers and Body Movement.
    Shoushan MM; Alexander Reyes B; Rodriguez AM; Woon Chong J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():84-87. PubMed ID: 34891245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of a Wireless Bluetooth Photoplethysmography Sensor Used on the Earlobe for Monitoring Heart Rate Variability Features during a Stress-Inducing Mental Task in Healthy Individuals.
    Correia B; Dias N; Costa P; Pêgo JM
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pitfall of heart rate variability analyses for autonomic nervous system activity with photoplethysmography.
    Nakamura H; Tagawa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1-4. PubMed ID: 31945831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation.
    Wójcikowski M; Pankiewicz B
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A 5-ms Error, 22-μA Photoplethysmography Sensor using Current Integration Circuit and Correlated Double Sampling.
    Watanabe K; Izumi S; Yano Y; Kawaguchi H; Yoshimoto M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5566-5569. PubMed ID: 30441597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal fiducial points for pulse rate variability analysis from forehead and finger photoplethysmographic signals.
    Peralta E; Lazaro J; Bailon R; Marozas V; Gil E
    Physiol Meas; 2019 Feb; 40(2):025007. PubMed ID: 30669123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying the accuracy of inter-beat intervals acquired from consumer-grade photoplethysmography wristbands using an electrocardiogram-aided information-based similarity approach.
    Cui X; Wang J; Xue S; Qin Z; Peng CK
    Physiol Meas; 2024 Mar; 45(3):. PubMed ID: 38387061
    [No Abstract]   [Full Text] [Related]  

  • 39. Noninvasive blood oxygen, heartbeat rate, and blood pressure parameter monitoring by photoplethysmography signals.
    Ku CJ; Wang Y; Chang CY; Wu MT; Dai ST; Liao LD
    Heliyon; 2022 Nov; 8(11):e11698. PubMed ID: 36458306
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.
    Wu HT; Lewis GF; Davila MI; Daubechies I; Porges SW
    Methods Inf Med; 2016 Oct; 55(5):463-472. PubMed ID: 27626806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.