These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1173 related articles for article (PubMed ID: 35340629)
1. A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study. Cui Y; Zhang J; Li Z; Wei K; Lei Y; Ren J; Wu L; Shi Z; Meng X; Yang X; Gao X EClinicalMedicine; 2022 Apr; 46():101348. PubMed ID: 35340629 [TBL] [Abstract][Full Text] [Related]
2. A Deep Learning Radiomics Nomogram to Predict Response to Neoadjuvant Chemotherapy for Locally Advanced Cervical Cancer: A Two-Center Study. Zhang Y; Wu C; Xiao Z; Lv F; Liu Y Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980381 [No Abstract] [Full Text] [Related]
3. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer. Jiang M; Li CL; Luo XM; Chuan ZR; Lv WZ; Li X; Cui XW; Dietrich CF Eur J Cancer; 2021 Apr; 147():95-105. PubMed ID: 33639324 [TBL] [Abstract][Full Text] [Related]
4. Deep Learning Radiomics Nomogram Based on Enhanced CT to Predict the Response of Metastatic Lymph Nodes to Neoadjuvant Chemotherapy in Locally Advanced Gastric Cancer. Zhong H; Wang T; Hou M; Liu X; Tian Y; Cao S; Li Z; Han Z; Liu G; Sun Y; Meng C; Li Y; Jiang Y; Ji Q; Hao D; Liu Z; Zhou Y Ann Surg Oncol; 2024 Jan; 31(1):421-432. PubMed ID: 37925653 [TBL] [Abstract][Full Text] [Related]
5. Deep learning nomogram for predicting neoadjuvant chemotherapy response in locally advanced gastric cancer patients. Zhang J; Zhang Q; Zhao B; Shi G Abdom Radiol (NY); 2024 May; ():. PubMed ID: 38796795 [TBL] [Abstract][Full Text] [Related]
6. Prediction of recurrence risk factors in patients with early-stage cervical cancers by nomogram based on MRI handcrafted radiomics features and deep learning features: a dual-center study. Zhang Y; Wu C; Du J; Xiao Z; Lv F; Liu Y Abdom Radiol (NY); 2024 Jan; 49(1):258-270. PubMed ID: 37987856 [TBL] [Abstract][Full Text] [Related]
7. Development and validation of a deep learning radiomics nomogram for preoperatively differentiating thymic epithelial tumor histologic subtypes. Chen X; Feng B; Xu K; Chen Y; Duan X; Jin Z; Li K; Li R; Long W; Liu X Eur Radiol; 2023 Oct; 33(10):6804-6816. PubMed ID: 37148352 [TBL] [Abstract][Full Text] [Related]
8. Deep learning predicts resistance to neoadjuvant chemotherapy for locally advanced gastric cancer: a multicenter study. Zhang J; Cui Y; Wei K; Li Z; Li D; Song R; Ren J; Gao X; Yang X Gastric Cancer; 2022 Nov; 25(6):1050-1059. PubMed ID: 35932353 [TBL] [Abstract][Full Text] [Related]
9. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study. Dong D; Fang MJ; Tang L; Shan XH; Gao JB; Giganti F; Wang RP; Chen X; Wang XX; Palumbo D; Fu J; Li WC; Li J; Zhong LZ; De Cobelli F; Ji JF; Liu ZY; Tian J Ann Oncol; 2020 Jul; 31(7):912-920. PubMed ID: 32304748 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a CT-based deep learning radiomics nomogram to predict muscle invasion in bladder cancer. Wei Z; Liu H; Xv Y; Liao F; He Q; Xie Y; Lv F; Jiang Q; Xiao M Heliyon; 2024 Jan; 10(2):e24878. PubMed ID: 38304824 [TBL] [Abstract][Full Text] [Related]
11. Ultrasound-Based Deep Learning Radiomics Nomogram for the Assessment of Lymphovascular Invasion in Invasive Breast Cancer: A Multicenter Study. Zhang D; Zhou W; Lu WW; Qin XC; Zhang XY; Wang JL; Wu J; Luo YH; Duan YY; Zhang CX Acad Radiol; 2024 Apr; ():. PubMed ID: 38658211 [TBL] [Abstract][Full Text] [Related]
12. Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study. Gu J; Tong T; Xu D; Cheng F; Fang C; He C; Wang J; Wang B; Yang X; Wang K; Tian J; Jiang T Cancer; 2023 Feb; 129(3):356-366. PubMed ID: 36401611 [TBL] [Abstract][Full Text] [Related]
13. Deep learning radio-clinical signatures for predicting neoadjuvant chemotherapy response and prognosis from pretreatment CT images of locally advanced gastric cancer patients. Hu C; Chen W; Li F; Zhang Y; Yu P; Yang L; Huang L; Sun J; Chen S; Shi C; Sun Y; Ye Z; Yuan L; Chen J; Wei Q; Xu J; Xu H; Tong Y; Bao Z; Huang C; Li Y; Du Y; Xu Z; Cheng X Int J Surg; 2023 Jul; 109(7):1980-1992. PubMed ID: 37132183 [TBL] [Abstract][Full Text] [Related]
14. Development and validation of a CT radiomics and clinical feature model to predict omental metastases for locally advanced gastric cancer. Wu A; Wu C; Zeng Q; Cao Y; Shu X; Luo L; Feng Z; Tu Y; Jie Z; Zhu Y; Zhou F; Huang Y; Li Z Sci Rep; 2023 May; 13(1):8442. PubMed ID: 37231100 [TBL] [Abstract][Full Text] [Related]
15. Constructing a Deep Learning Radiomics Model Based on X-ray Images and Clinical Data for Predicting and Distinguishing Acute and Chronic Osteoporotic Vertebral Fractures: A Multicenter Study. Zhang J; Xia L; Tang J; Xia J; Liu Y; Zhang W; Liu J; Liang Z; Zhang X; Zhang L; Tang G Acad Radiol; 2024 May; 31(5):2011-2026. PubMed ID: 38016821 [TBL] [Abstract][Full Text] [Related]
16. Prediction of response to neoadjuvant chemotherapy in advanced gastric cancer: A radiomics nomogram analysis based on CT images and clinicopathological features. Tan X; Yang X; Hu S; Ge Y; Wu Q; Wang J; Sun Z J Xray Sci Technol; 2023; 31(1):49-61. PubMed ID: 36314190 [TBL] [Abstract][Full Text] [Related]
17. Xue XQ; Yu WJ; Shi X; Shao XL; Wang YT Front Oncol; 2022; 12():911168. PubMed ID: 36003788 [TBL] [Abstract][Full Text] [Related]
18. Multiparametric MRI-based radiomics nomogram for early prediction of pathological response to neoadjuvant chemotherapy in locally advanced gastric cancer. Li J; Yin H; Wang Y; Zhang H; Ma F; Li H; Qu J Eur Radiol; 2023 Apr; 33(4):2746-2756. PubMed ID: 36512039 [TBL] [Abstract][Full Text] [Related]
19. Development and validation of a Liu H; Cui Y; Chang C; Zhou Z; Zhang Y; Ma C; Yin Y; Wang R BMC Cancer; 2024 Jan; 24(1):150. PubMed ID: 38291351 [TBL] [Abstract][Full Text] [Related]
20. A CT-based deep learning radiomics nomogram outperforms the existing prognostic models for outcome prediction in clear cell renal cell carcinoma: a multicenter study. Nie P; Yang G; Wang Y; Xu Y; Yan L; Zhang M; Zhao L; Wang N; Zhao X; Li X; Cheng N; Wang Y; Chen C; Wang N; Duan S; Wang X; Wang Z Eur Radiol; 2023 Dec; 33(12):8858-8868. PubMed ID: 37389608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]