These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 35340991)
21. Predictive study of tuberculosis incidence by time series method and Elman neural network in Kashgar, China. Zheng Y; Zhang X; Wang X; Wang K; Cui Y BMJ Open; 2021 Jan; 11(1):e041040. PubMed ID: 33478962 [TBL] [Abstract][Full Text] [Related]
22. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related]
23. Did Human Microbes Affect Tourist Arrivals before the COVID-19 Shock? Pre-Effect Forecasting Model for Slovenia. Gričar S; Bojnec Š Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36294060 [TBL] [Abstract][Full Text] [Related]
24. Statistical methods for predicting tuberculosis incidence based on data from Guangxi, China. Zheng Y; Zhang L; Wang L; Rifhat R BMC Infect Dis; 2020 Apr; 20(1):300. PubMed ID: 32321419 [TBL] [Abstract][Full Text] [Related]
25. Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Liu Q; Li Z; Ji Y; Martinez L; Zia UH; Javaid A; Lu W; Wang J Infect Drug Resist; 2019; 12():2311-2322. PubMed ID: 31440067 [TBL] [Abstract][Full Text] [Related]
26. Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China. Zhang R; Song H; Chen Q; Wang Y; Wang S; Li Y PLoS One; 2022; 17(1):e0262009. PubMed ID: 35030203 [TBL] [Abstract][Full Text] [Related]
27. Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks. Wu W; An SY; Guan P; Huang DS; Zhou BS BMC Infect Dis; 2019 May; 19(1):414. PubMed ID: 31088391 [TBL] [Abstract][Full Text] [Related]
28. Forecasting the incidence of acute haemorrhagic conjunctivitis in Chongqing: a time series analysis. Qiu H; Zeng D; Yi J; Zhu H; Hu L; Jing D; Ye M Epidemiol Infect; 2020 Aug; 148():e193. PubMed ID: 32807257 [TBL] [Abstract][Full Text] [Related]
29. Multiple forecasting approach: a prediction of CO2 emission from the paddy crop in India. Singh PK; Pandey AK; Ahuja S; Kiran R Environ Sci Pollut Res Int; 2022 Apr; 29(17):25461-25472. PubMed ID: 34841483 [TBL] [Abstract][Full Text] [Related]
30. Forecasting demand for blood products: Towards inventory management of a perishable product. Thakur SK; Sinha AK; Negi DK; Singh S Bioinformation; 2024; 20(1):20-28. PubMed ID: 38352907 [TBL] [Abstract][Full Text] [Related]
31. Hypertension and Diabetes in Akatsi South District, Ghana: Modeling and Forecasting. Asante DO; Walker AN; Seidu TA; Kpogo SA; Zou J Biomed Res Int; 2022; 2022():9690964. PubMed ID: 35187174 [TBL] [Abstract][Full Text] [Related]
32. Forecasting deaths of road traffic injuries in China using an artificial neural network. Qian Y; Zhang X; Fei G; Sun Q; Li X; Stallones L; Xiang H Traffic Inj Prev; 2020; 21(6):407-412. PubMed ID: 32500738 [No Abstract] [Full Text] [Related]
33. Forecasting Tourist Arrivals for Hainan Island in China with Decomposed Broad Learning before the COVID-19 Pandemic. Chen J; Yang J; Huang S; Li X; Liu G Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832704 [TBL] [Abstract][Full Text] [Related]
34. Forecasting Patient Discharge Before Noon: A Comparison Between Holt's and Box-Jenkins' Models. Berríos RA Qual Manag Health Care; 2019; 28(4):237-244. PubMed ID: 31567847 [TBL] [Abstract][Full Text] [Related]
35. Estimating air quality in a traffic tunnel using a forecasting combination model. Lee CC; Wan TJ; Kuo CY; Chung CY Environ Monit Assess; 2006 Jan; 112(1-3):327-45. PubMed ID: 16404549 [TBL] [Abstract][Full Text] [Related]
36. Forecasting outbreak of COVID-19 in Turkey; Comparison of Box-Jenkins, Brown's exponential smoothing and long short-term memory models. Guleryuz D Process Saf Environ Prot; 2021 May; 149():927-935. PubMed ID: 33776248 [TBL] [Abstract][Full Text] [Related]
37. Adaptive tourism forecasting using hybrid artificial intelligence model: a case study of Xi'an international tourist arrivals. Zheng S; Zhang Z PeerJ Comput Sci; 2023; 9():e1573. PubMed ID: 38077529 [TBL] [Abstract][Full Text] [Related]
38. Performance of univariate forecasting on seasonal diseases: the case of tuberculosis. Permanasari AE; Rambli DR; Dominic PD Adv Exp Med Biol; 2011; 696():171-9. PubMed ID: 21431557 [TBL] [Abstract][Full Text] [Related]
39. Seasonal behavior and forecasting trends of tuberculosis incidence in Holy Kerbala, Iraq. Mohammed SH; Ahmed MM; Al-Mousawi AM; Azeez A Int J Mycobacteriol; 2018; 7(4):361-367. PubMed ID: 30531036 [TBL] [Abstract][Full Text] [Related]
40. Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China. Wang G; Wei W; Jiang J; Ning C; Chen H; Huang J; Liang B; Zang N; Liao Y; Chen R; Lai J; Zhou O; Han J; Liang H; Ye L Epidemiol Infect; 2019 Jan; 147():e194. PubMed ID: 31364559 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]