These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35341057)

  • 1. Mutation breeding of
    Peng Q; Xiao Y; Zhang S; Zhou C; Xie A; Li Z; Tan A; Zhou L; Xie Y; Zhao J; Wu C; Luo L; Huang J; He T; Sun R
    PeerJ; 2022; 10():e13076. PubMed ID: 35341057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Influencing factors of phosphate solubilizing capacity of Aspergillus niger and optimization of its culture condition].
    Sun R; Zhang S; Wu CL; Li Z; Xiao Y
    Ying Yong Sheng Tai Xue Bao; 2020 Jun; 31(6):1963-1970. PubMed ID: 34494750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Citric Acid Production from Acorn Starch by Tannin Tolerance Mutant Aspergillus niger AA120.
    Zhang N; Jiang JC; Yang J; Wei M; Zhao J; Xu H; Xie JC; Tong YJ; Yu L
    Appl Biochem Biotechnol; 2019 May; 188(1):1-11. PubMed ID: 30284209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient biorefinery of whole cassava for citrate production using Aspergillus niger mutated by atmospheric and room temperature plasma and enhanced co-saccharification strategy.
    Wang B; Tan F; Yu F; Li H; Zhang M
    J Sci Food Agric; 2021 Aug; 101(11):4613-4620. PubMed ID: 33474750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria.
    Dey R; Pal KK; Bhatt DM; Chauhan SM
    Microbiol Res; 2004; 159(4):371-94. PubMed ID: 15646384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Screening and identification of an efficient phosphate-solubilizing
    Lyu J; Yu C
    Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):2923-2934. PubMed ID: 33345493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluoride-tolerant mutants of Aspergillus niger show enhanced phosphate solubilization capacity.
    Silva Ude C; Mendes Gde O; Silva NM; Duarte JL; Silva IR; Tótola MR; Costa MD
    PLoS One; 2014; 9(10):e110246. PubMed ID: 25310310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of Culturable Phosphate-Solubilizing Bacteria in Soil Aggregates and Their Potential for Phosphorus Acquisition.
    He D; Wan W
    Microbiol Spectr; 2022 Jun; 10(3):e0029022. PubMed ID: 35536021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosolubilization of rock phosphate by three stress-tolerant fungal strains.
    Xiao C; Chi R; Li X; Xia M; Xia Z
    Appl Biochem Biotechnol; 2011 Sep; 165(2):719-27. PubMed ID: 21625871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1.
    Xiao C; Zhang H; Fang Y; Chi R
    Appl Biochem Biotechnol; 2013 Jan; 169(1):123-33. PubMed ID: 23229476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil.
    Yin Z; Shi F; Jiang H; Roberts DP; Chen S; Fan B
    Can J Microbiol; 2015 Dec; 61(12):913-23. PubMed ID: 26469739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2.
    Li X; Luo L; Yang J; Li B; Yuan H
    Appl Biochem Biotechnol; 2015 Mar; 175(5):2755-68. PubMed ID: 25561059
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Wang L; Guan H; Hu J; Feng Y; Li X; Yusef KK; Gao H; Tian D
    J Agric Food Chem; 2022 Sep; 70(35):10738-10746. PubMed ID: 36027054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Inorganic Phosphate Solubilizing Bacilli Isolated from Moroccan Phosphate Rock Mine and Rhizosphere Soils in Wheat (Triticum aestivum L) Phosphorus Uptake.
    Azaroual SE; Hazzoumi Z; Mernissi NE; Aasfar A; Meftah Kadmiri I; Bouizgarne B
    Curr Microbiol; 2020 Sep; 77(9):2391-2404. PubMed ID: 32468184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation, Mutagenesis, and Organic Acid Secretion of a Highly Efficient Phosphate-Solubilizing Fungus.
    Yang T; Li L; Wang B; Tian J; Shi F; Zhang S; Wu Z
    Front Microbiol; 2022; 13():793122. PubMed ID: 35547144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate.
    Richardson AE; Hadobas PA; Hayes JE
    Plant J; 2001 Mar; 25(6):641-9. PubMed ID: 11319031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas.
    Vyas P; Gulati A
    BMC Microbiol; 2009 Aug; 9():174. PubMed ID: 19698133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of nitrogen fixing
    Din M; Nelofer R; Salman M; Abdullah ; Khan FH; Khan A; Ahmad M; Jalil F; Din JU; Khan M
    Biotechnol Rep (Amst); 2019 Jun; 22():e00323. PubMed ID: 30976534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil.
    Medina A; Roldán A; Azcón R
    J Environ Manage; 2010 Dec; 91(12):2547-53. PubMed ID: 20705386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.