These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 35341394)
1. Structure design and mechanical performance analysis of three kinds of bioresorbable poly-lactic acid (PLA) stents. Wang Y; Wu H; Fan S; Wu J; Yang S Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):25-37. PubMed ID: 35341394 [TBL] [Abstract][Full Text] [Related]
2. Computational and experimental investigation into mechanical performances of Poly-L-Lactide Acid (PLLA) coronary stents. Wang Q; Fang G; Zhao Y; Wang G; Cai T J Mech Behav Biomed Mater; 2017 Jan; 65():415-427. PubMed ID: 27643678 [TBL] [Abstract][Full Text] [Related]
3. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Pauck RG; Reddy BD Med Eng Phys; 2015 Jan; 37(1):7-12. PubMed ID: 25456397 [TBL] [Abstract][Full Text] [Related]
4. Structural optimization and finite element analysis of poly-l-lactide acid coronary stent with improved radial strength and acute recoil rate. Song K; Bi Y; Zhao H; Wu T; Xu F; Zhao G J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2754-2764. PubMed ID: 32154984 [TBL] [Abstract][Full Text] [Related]
5. Future Balloon-Expandable Stents: High or Low-Strength Materials? Khalilimeybodi A; Alishzadeh Khoei A; Sharif-Kashani B Cardiovasc Eng Technol; 2020 Apr; 11(2):188-204. PubMed ID: 31836964 [TBL] [Abstract][Full Text] [Related]
6. Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent. Bobel AC; Petisco S; Sarasua JR; Wang W; McHugh PE Cardiovasc Eng Technol; 2015 Dec; 6(4):519-32. PubMed ID: 26577483 [TBL] [Abstract][Full Text] [Related]
7. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations. Qiu TY; Zhao LG; Song M Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211 [TBL] [Abstract][Full Text] [Related]
8. Effects of stent structure on stent flexibility measurements. Mori K; Saito T Ann Biomed Eng; 2005 Jun; 33(6):733-42. PubMed ID: 16078613 [TBL] [Abstract][Full Text] [Related]
10. A comparative study on the deformation behavior and mechanical properties of new lower extremity arterial stents. Feng H; Shi X; Wang T; Wang K; Su J Comput Methods Programs Biomed; 2024 Apr; 247():108094. PubMed ID: 38401508 [TBL] [Abstract][Full Text] [Related]
11. Braided bioresorbable cardiovascular stents mechanically reinforced by axial runners. Zhao F; Xue W; Wang F; Sun J; Lin J; Liu L; Sun K; Wang L J Mech Behav Biomed Mater; 2019 Jan; 89():19-32. PubMed ID: 30236978 [TBL] [Abstract][Full Text] [Related]
12. Enhancing flexibility and strength-to-weight ratio of polymeric stents: A new variable-thickness design approach. Khatami M; Doniavi A; Abazari AM; Fotouhi M J Mech Behav Biomed Mater; 2024 Feb; 150():106262. PubMed ID: 38029464 [TBL] [Abstract][Full Text] [Related]
13. A phenomenological model of pulsatile blood pressure-affected degradation of polylactic acid (PLA) vascular stent. He S; Liu W; Wei L; Chen Q; Li Z Med Biol Eng Comput; 2024 May; 62(5):1347-1359. PubMed ID: 38183527 [TBL] [Abstract][Full Text] [Related]
14. [Comparative study on the mechanical properties of lower limb arterial stents under various deformation modes]. Wang T; Feng H; Wang K Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):303-309. PubMed ID: 33913290 [TBL] [Abstract][Full Text] [Related]
15. Design optimization of stent and its dilatation balloon using kriging surrogate model. Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895 [TBL] [Abstract][Full Text] [Related]
16. A comparative reliability and performance study of different stent designs in terms of mechanical properties: foreshortening, recoil, radial force, and flexibility. Kim DB; Choi H; Joo SM; Kim HK; Shin JH; Hwang MH; Choi J; Kim DG; Lee KH; Lim CH; Yoo SK; Lee HM; Sun K Artif Organs; 2013 Apr; 37(4):368-79. PubMed ID: 23461583 [TBL] [Abstract][Full Text] [Related]
18. Nanoparticles-reinforced poly-l-lactic acid composite materials as bioresorbable scaffold candidates for coronary stents: Insights from mechanical and finite element analysis. Toong DWY; Ng JCK; Cui F; Leo HL; Zhong L; Lian SS; Venkatraman S; Tan LP; Huang YY; Ang HY J Mech Behav Biomed Mater; 2022 Jan; 125():104977. PubMed ID: 34814078 [TBL] [Abstract][Full Text] [Related]
19. [Finite element analysis for compression and expansion behavior of magnesium stent]. Chen H; Liu X; Yuan G; Zhang L; Li Z; Luo Q; Lin F Zhongguo Yi Liao Qi Xie Za Zhi; 2014 May; 38(3):161-4, 176. PubMed ID: 25241506 [TBL] [Abstract][Full Text] [Related]
20. Mechanical behavior of fully expanded commercially available endovascular coronary stents. Tambaca J; Canic S; Kosor M; Fish RD; Paniagua D Tex Heart Inst J; 2011; 38(5):491-501. PubMed ID: 22163122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]