These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35341394)

  • 21. Drug-eluting biodegradable poly-D/L-lactic acid vascular stents: an experimental pilot study.
    Uurto I; Mikkonen J; Parkkinen J; Keski-Nisula L; Nevalainen T; Kellomäki M; Törmälä P; Salenius JP
    J Endovasc Ther; 2005 Jun; 12(3):371-9. PubMed ID: 15943514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biodegradable performance of PLA stents affected by geometrical parameters: The risk of fracture and fragment separation.
    Khalaj Amnieh S; Mashayekhi M; Shahnooshi E; Tavafoghi M; Mosaddegh P
    J Biomech; 2021 Jun; 122():110489. PubMed ID: 33964575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation on large elastoplastic deformation in expansion and springback for a composited bioresorbable stent.
    Chen Y; Shang X
    J Mech Behav Biomed Mater; 2021 Jul; 119():104500. PubMed ID: 33894526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of parameters on mechanical properties of poly (L-lactic acid) helical stents.
    Zhao G; Liu J; Liu M; Tian Y; Cheng J; Liu W; Ni Z
    J Biomed Mater Res B Appl Biomater; 2022 Jul; 110(7):1705-1712. PubMed ID: 35157351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Composite material stent comprising metallic wire and polylactic acid fibers, and its mechanical strength and retrievability.
    Shomura Y; Tanigawa N; Tokuda T; Kariya S; Kojima H; Komemushi A; Sawada S
    Acta Radiol; 2009 May; 50(4):355-9. PubMed ID: 19306137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method.
    Liu Y; Zhu G; Yang H; Wang C; Zhang P; Han G
    J Mech Behav Biomed Mater; 2018 Jan; 77():157-163. PubMed ID: 28917130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical behavior of coronary stents investigated through the finite element method.
    Migliavacca F; Petrini L; Colombo M; Auricchio F; Pietrabissa R
    J Biomech; 2002 Jun; 35(6):803-11. PubMed ID: 12021000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-objective optimization of coronary stent using Kriging surrogate model.
    Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel double arrowhead auxetic coronary stent.
    Gupta K; Meena K
    Comput Biol Med; 2023 Nov; 166():107525. PubMed ID: 37778216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of three-dimensionally printed vascular stents of bioresorbable poly(l-lactide-co-caprolactone).
    Zhao J; Song G; Zhao Q; Feng H; Wang Y; Anderson JM; Zhao H; Liu Q
    J Biomed Mater Res B Appl Biomater; 2023 Mar; 111(3):656-664. PubMed ID: 36420745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparing coronary stent material performance on a common geometric platform through simulated bench testing.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-Objective Optimization of Bioresorbable Magnesium Alloy Stent by Kriging Surrogate Model.
    Wang H; Jiao L; Sun J; Yan P; Wang X; Qiu T
    Cardiovasc Eng Technol; 2022 Dec; 13(6):829-839. PubMed ID: 35414048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical design of an intracranial stent for treating cerebral aneurysms.
    Shobayashi Y; Tanoue T; Tateshima S; Tanishita K
    Med Eng Phys; 2010 Nov; 32(9):1015-24. PubMed ID: 20675176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-objective optimisation of material properties and strut geometry for poly(L-lactic acid) coronary stents using response surface methodology.
    Blair RW; Dunne NJ; Lennon AB; Menary GH
    PLoS One; 2019; 14(8):e0218768. PubMed ID: 31449528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel biodegradable stent applicable for use in congenital heart disease: bench testing and feasibility results in a rabbit model.
    Veeram Reddy SR; Welch TR; Wang J; Bernstein F; Richardson JA; Forbess JM; Nugent AW
    Catheter Cardiovasc Interv; 2014 Feb; 83(3):448-56. PubMed ID: 23592519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on the bending behavior of biodegradable metal cerebral vascular stents using finite element analysis.
    Shi W; Li H; Zhu T; Jin Y; Wang H; Yang J; Zhao D
    J Biomech; 2020 Jul; 108():109856. PubMed ID: 32635992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterizing the expansive deformation of a bioresorbable polymer fiber stent.
    Welch T; Eberhart RC; Chuong CJ
    Ann Biomed Eng; 2008 May; 36(5):742-51. PubMed ID: 18264765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [In vitro experimental study on the mechanical properties of biodegradable polymer stents].
    Wei Y; Wang M; Zhao D; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug; 36(4):604-612. PubMed ID: 31441261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical investigations of the mechanical properties of braided vascular stents.
    Fu W; Xia Q; Yan R; Qiao A
    Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational Analysis of the Utilisation of the Shape Memory Effect and Balloon Expansion in Fully Polymeric Stent Deployment.
    Bobel AC; McHugh PE
    Cardiovasc Eng Technol; 2018 Mar; 9(1):60-72. PubMed ID: 29243163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.