These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35341869)

  • 1. Progress in recycling and valorization of waste silk.
    Lu L; Fan W; Ge S; Liew RK; Shi Y; Dou H; Wang S; Lam SS
    Sci Total Environ; 2022 Jul; 830():154812. PubMed ID: 35341869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current recycling strategies and high-value utilization of waste cotton.
    Lu L; Fan W; Meng X; Xue L; Ge S; Wang C; Foong SY; Tan CSY; Sonne C; Aghbashlo M; Tabatabaei M; Lam SS
    Sci Total Environ; 2023 Jan; 856(Pt 1):158798. PubMed ID: 36116663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk wastes and autoclaved degumming as an alternative for a sustainable silk process.
    Gaviria A; Jaramillo-Quiceno N; Motta A; Restrepo-Osorio A
    Sci Rep; 2023 Sep; 13(1):15296. PubMed ID: 37714876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobilisation of textile waste to recover high added value products and energy for the transition to circular economy.
    Papamichael I; Voukkali I; Economou F; Loizia P; Demetriou G; Esposito M; Naddeo V; Liscio MC; Sospiro P; Zorpas AA
    Environ Res; 2024 Feb; 242():117716. PubMed ID: 37995999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorless Silk/Copper Sulfide Hybrid Fiber and Fabric with Spontaneous Heating Property under Sunlight.
    Wang H; Dong Q; Yao J; Shao Z; Ma J; Chen X
    Biomacromolecules; 2020 Apr; 21(4):1596-1603. PubMed ID: 32159952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics.
    Wu R; Ma L; Liu XY
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103981. PubMed ID: 34802200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and properties of silk fibroin grafted carboxylic cotton fabric via amide covalent modification.
    Xu Y; Chen D; Du Z; Li J; Wang Y; Yang Z; Peng F
    Carbohydr Polym; 2017 Apr; 161():99-108. PubMed ID: 28189251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Modification and Characterisation of Silk Fibroin Fabric Produced by the Layer-by-Layer Self-Assembly of Multilayer Alginate/Regenerated Silk Fibroin.
    Shen G; Hu X; Guan G; Wang L
    PLoS One; 2015; 10(4):e0124811. PubMed ID: 25919690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies of Recovery and Organic Recycling Used in Textile Waste Management.
    Wojnowska-Baryła I; Bernat K; Zaborowska M
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-regenerated silk fibroin with controlled crystallinity for the reinforcement of silk.
    Chelazzi D; Badillo-Sanchez D; Giorgi R; Cincinelli A; Baglioni P
    J Colloid Interface Sci; 2020 Sep; 576():230-240. PubMed ID: 32417684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties.
    Sharma K; Khilari V; Chaudhary BU; Jogi AB; Pandit AB; Kale RD
    Waste Manag; 2020 Apr; 107():227-234. PubMed ID: 32311640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The supply and demand balance of recyclable textiles in the Nordic countries.
    Dukovska-Popovska I; Kjellsdotter Ivert L; Jónsdóttir H; Carin Dreyer H; Kaipia R
    Waste Manag; 2023 Mar; 159():154-162. PubMed ID: 36764240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in regenerated cellulosic aerogel from waste cotton textile for emerging multidimensional applications.
    Huang Z; Zhang Y; Xing T; He A; Luo Y; Wang M; Qiao S; Tong A; Shi Z; Liao X; Pan H; Liang Z; Chen F; Xu W
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132462. PubMed ID: 38772470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State of the art of post-consumer textile waste upcycling to reach the zero waste milestone.
    Stanescu MD
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14253-14270. PubMed ID: 33515405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle assessment applications to reuse, recycling and circular practices for textiles: A review.
    Abagnato S; Rigamonti L; Grosso M
    Waste Manag; 2024 Jun; 182():74-90. PubMed ID: 38643525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closing the textile loop: Enzymatic fibre separation and recycling of wool/polyester fabric blends.
    Navone L; Moffitt K; Hansen KA; Blinco J; Payne A; Speight R
    Waste Manag; 2020 Feb; 102():149-160. PubMed ID: 31678801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.
    Andrew TL; Zhang L; Cheng N; Baima M; Kim JJ; Allison L; Hoxie S
    Acc Chem Res; 2018 Apr; 51(4):850-859. PubMed ID: 29521501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upcycling textile waste using pyrolysis process.
    Lee HS; Jung S; Lin KA; Kwon EE; Lee J
    Sci Total Environ; 2023 Feb; 859(Pt 2):160393. PubMed ID: 36423842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmentally-friendly thermal and acoustic insulation materials from recycled textiles.
    Islam S; Bhat G
    J Environ Manage; 2019 Dec; 251():109536. PubMed ID: 31542622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Selective Enzymatic Recovery of Building Blocks from Wool-Cotton-Polyester Textile Waste Blends.
    Quartinello F; Vecchiato S; Weinberger S; Kremenser K; Skopek L; Pellis A; Guebitz GM
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.