These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 35341869)

  • 21. A triple-crosslinking strategy for high-performance regenerated cellulose fibers derived from waste cotton textiles.
    Huang Z; Tong A; Xing T; He A; Luo Y; Zhang Y; Wang M; Qiao S; Shi Z; Chen F; Xu W
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130779. PubMed ID: 38471604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transforming textile waste into nanocellulose for a circular future.
    Sathasivam T; Sugiarto S; Yew MPY; Oh XY; Chan SY; Chan BQY; Tim MJ; Kai D
    Nanoscale; 2024 Jul; ():. PubMed ID: 39012322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comprehensive review on textile waste valorization techniques and their applications.
    Mishra PK; Izrayeel AMD; Mahur BK; Ahuja A; Rastogi VK
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):65962-65977. PubMed ID: 35902525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustainable Antibacterial Surgical Suture Based on Recycled Silk Resource by an Internal Combination of Inorganic Nanomaterials.
    Zhang X; Yang Z; Yang X; Zhang F; Pan Z
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):29971-29981. PubMed ID: 37318121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent.
    Zhang F; Lu Q; Yue X; Zuo B; Qin M; Li F; Kaplan DL; Zhang X
    Acta Biomater; 2015 Jan; 12():139-145. PubMed ID: 25281787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring an alternative to the Chilean textile waste: A carbon footprint assessment of a textile recycling process.
    Espinoza Pérez LA; Espinoza Pérez AT; Vásquez ÓC
    Sci Total Environ; 2022 Jul; 830():154542. PubMed ID: 35337866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recycling and high-value utilization of polyethylene terephthalate wastes: A review.
    Ren T; Zhan H; Xu H; Chen L; Shen W; Xu Y; Zhao D; Shao Y; Wang Y
    Environ Res; 2024 May; 249():118428. PubMed ID: 38325788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Investigation of fibrous cultural materials by infrared spectroscopy].
    Luo XY; Du YP; Shen MH; Zhang WQ; Zhou XG; Fang SY; Zhang X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):60-4. PubMed ID: 25993821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-consumer textile thermochemical recycling to fuels and biocarbon: A critical review.
    Athanasopoulos P; Zabaniotou A
    Sci Total Environ; 2022 Aug; 834():155387. PubMed ID: 35461931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Assembly of Bombyx mori Silk Fibroin.
    Kong N
    Methods Mol Biol; 2021; 2347():69-82. PubMed ID: 34472056
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic textile recycling - best practices and outlook.
    Piribauer B; Bartl A; Ipsmiller W
    Waste Manag Res; 2021 Oct; 39(10):1277-1290. PubMed ID: 34238113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical recycling of waste clothes: a smarter approach to sustainable development.
    Singhal S; Agarwal S; Singhal N
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):54448-54469. PubMed ID: 36973625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis.
    Sanchis-Sebastiá M; Ruuth E; Stigsson L; Galbe M; Wallberg O
    Waste Manag; 2021 Feb; 121():248-254. PubMed ID: 33388647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Textile recycling processes, state of the art and current developments: A mini review.
    Piribauer B; Bartl A
    Waste Manag Res; 2019 Feb; 37(2):112-119. PubMed ID: 30632932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-quality acrylic fibers from waste textiles.
    Mu B; Yu X; Shao Y; Yang Y
    Sci Total Environ; 2024 Jun; 931():172752. PubMed ID: 38677427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorylation of silk fibroins improves the cytocompatibility of silk fibroin derived materials: a platform for the production of tuneable material.
    Volkov V; Vasconcelos A; Sárria MP; Gomes AC; Cavaco-Paulo A
    Biotechnol J; 2014 Oct; 9(10):1267-78. PubMed ID: 25087614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Textile Waste Fiber Regeneration via a Green Chemistry Approach: A Molecular Strategy for Sustainable Fashion.
    Sun X; Wang X; Sun F; Tian M; Qu L; Perry P; Owens H; Liu X
    Adv Mater; 2021 Dec; 33(48):e2105174. PubMed ID: 34561908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres.
    Landi D; Gigli S; Germani M; Marconi M
    Waste Manag; 2018 May; 75():187-204. PubMed ID: 29454817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Progress of silk fibroin in the cell scaffold of tissue engineering].
    Tian L; Min S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1375-8. PubMed ID: 17228748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabricated tropoelastin-silk yarns and woven textiles for diverse tissue engineering applications.
    Aghaei-Ghareh-Bolagh B; Mithieux SM; Hiob MA; Wang Y; Chong A; Weiss AS
    Acta Biomater; 2019 Jun; 91():112-122. PubMed ID: 31004842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.